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1. Cover Sheet: Attached.

2. Objectives: The objective of this project was to develop the science of digital image
forensics to a point where authenticity and integrity of digital images can be verified and
validated with minimal assumption on the specifics of the generative process. The end
goal of the proposed project is to leverage the resources that are available to computer
forensics investigators and law enforcement officers, thereby enabling more reliable and
accurate decisions on the integrity and authenticity of a digital image prior to admitting it
into evidence.

To achieve our goal, we pursued research to integrate and advance current signal and
image processing techniques and statistical modeling to develop novel image forensics
techniques. Specific objectives of our research included:

Determining the source digital camera of an image. This entailed associating the image
with a class of cameras that have common characteristics and matching the image to an
individual camera.
Discrimination of synthetic images from real images to identify computer generated
images which does not depict a real-life occurrence.
Detection of image tampering to determine whether a given image has undergone any
form of modification or processing after it was initially captured.

Several techniques have been proposed to address all these objectives. The involved
research involved post-doctoral research associate and graduate students, at the PhD
level, in addition to Pl. Project deliverables include descriptions of implementation
details, image-sets used in experiments and research papers which were delivered to
AFRL for experimentation and verification.
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3. Status of Effort

Our objectives towards development of source individual camera and camera-model
identification techniques were met by introducing three novel techniques and an
improvement over existing approaches. We conducted our experiments on a variety of
image data sets which were either generated by our efforts or through crawling public
photo sharing sites based on available EXIF headers. We also developed various
classification techniques to classify images according to their class characteristics. Our
results were published in four conference papers and one journal paper.

Our goal towards developing techniques to discriminate computer generated images from
real images has resulted with two novel approaches. In testing our approaches we used
large sets of computer generated images that are obtained from specific forums and
public sited. Proposed techniques are also incorporated with the existing approaches to
improve the performance state-of-the-art techniques.

To achieve our objective of devising tamper detection techniques, we proposed new
approaches and tested them rigorously under a variety of settings, compared them with
some of the existing approaches, and incorporated them together. However, to determine
the true false positive and detection rates of our approach, we need to test them on larger
tampered image data sets.

The fact that many proposed image forensics techniques have limitations and none of
them by itself offers a definitive solution, have inspired us to continue our work in the
field. We are currently studying the problem further both to propose new techniques and
combine existing techniques to obtain more reliable decisions. Our ongoing effort will
lead to tools that can be utilized by both law enforcement entities and researchers in the
field to evaluate and design better techniques

4. Summary of Achievements

We made progress on several fronts in the project. Below we itemize these achievements
by topic and summarize the main results obtained. More detailed results are in the papers
listed in the publications section.

1. Source Camera-Model Identification
1.1 Image Features: Inspired by the success of universal steganalysis techniques, We
proposed a similar approach to identify source camera-model [1]. In essence, a select
number of features designed to detect post-processing are incorporated with new
features to fingerprint camera-models. The 34 features include color features (e.g.,
deviations from gray world assumption, inter-band correlations, gamma factor
estimates), image quality metrics, and wavelet coefficient statistics. These features
are then used to construct multi-class classifiers. The results obtained on moderate to
low compressed images taken by 4 different camera-models yielded an identification
accuracy of 97%. When experiments are repeated on five cameras where three of
them are of the same brand, the accuracy is measured to be 88%. (Tsai et al. [2] later
repeated this study using a different set of cameras and reported similar results.) In



[3], we took a similar approach to differentiate between cell-phone camera-models by
deploying binary similarity measures as features. In this case, the identification
accuracy among nine cell-phone models (of four different brands) is determined as
83%. There are two main concerns regarding this type of approaches. First is that as
they provide an overall decision, it is not clear as to what specific feature enables
identification which is very important in forensic investigations and in expert witness
testimonies. Second concern is the scalability of performance with the increasing
number of digital cameras in the presence of hundreds of digital cameras. Hence, in
general, this approach is more suitable as a pre-processing technique to cluster images
taken by cameras with similar components and processing algorithms.

1.2 CFA and Demosaicing Artifacts: The choice of CFA and the specifics of the
demosacing algorithm are some of the most pronounced differences among different
digital camera-models. In digital cameras with single imaging sensors, the use of
demosacing algorithms is crucial for correct rendering of high spatial frequency
image details, and it uniquely impacts the edge and color quality of an image.
Essentially, demosaicing is a form of interpolation which in effect introduces a
specific type of inter-dependency (correlations) between color values of image pixels.
The specific form of these dependencies can be extracted from the images to
fingerprint different demosaicing algorithms and to determine the source camera-
model of an image. To fingerprint demosaicing algorithms used in different digital
camera-models, we deployed expectation/maximization algorithm, assuming a linear
model for interpolation within a 5x5 window, and analyzed patterns of periodicity in
second order derivates of rows and columns of pixels in moderately smooth and very
smooth image parts, respectively [4][5]. The estimated filter coefficients and the
periodicity features are used as features in construction of classifiers to detect source
camera-model. The accuracy in identifying the source of an image among four and
five camera-models is measured as 86% and 78%, respectively, using images
captured under automatic settings and at highest compression quality levels.

2. Individual Source Identification
Augmenting Imaging Sensor Imperfections: In [6], Lukas et al. proposed a promising
approach to detect the pixel non-uniformity noise, which is the dominant component
of the photo-response non-uniformity pattern noise arising due to different sensitivity
of pixels to light, to enable source camera matching. To determine the false-positive
and true-detection performance of the scheme proposed in [6] under a more realistic
setting, we performed experiments on large image data sets and observed that some of
the tested cameras yield false-positive rates much higher than the expected values.
To better cope with false-positives, we proposed coupling the approach of [7] with
camera-model identification methodology. In this case, during the extraction of the
pattern the demosaicing characteristics of the source camera-model are also
determined as described in [5]. When a decision is to be made in matching an image
to a potential source camera, it is also required that the class properties of the camera
extracted from the individual image is also in agreement with those of the source
camera. It is shown that this approach is very effective in reducing the false-positive
rate with a marginal reduction in the true-detection rate.



Sensor Dust Characteristics: We proposed another method for source camera
identification based on sensor dust characteristics of single digital single-lens reflex
(DSLR) cameras which are becoming increasingly popular because of their
interchangeable lenses [8]. Essentially, the sensor dust problem emerges when the
lens is removed and the sensor area is opened to the hazards of dust and moisture
which are attracted to the imaging sensor due to electrostatic fields, causing a unique
dust pattern before the surface of the sensor. Sensor dust problem is persistent and
most generally the patterns are not visually very significant. Therefore, traces of dust
specks can be used for two purposes: to differentiate images taken by cheaper
consumer level cameras and DSLR cameras and to associate an image with a
particular DSLR camera. However, it should be noted that the lack of a match
between dust patterns does not indicate anything since the dust specks might have
been cleaned. Devising an empirical dust model characterized by intensity loss and
roundness properties; the authors proposed a technique to detect noise specks on
images through match filtering and contour analysis. This information is used in
generation of a camera dust reference pattern which is later checked in individual
images. In the experiments, ten images obtained from three DSLR cameras are used
in generating a reference pattern which is then tested on a mixed set of 80 images (20
taken with the same camera and 60 with other cameras) yielding an average accuracy
of 92% in matching the source with no false-positives

3. Identification of Synthetic Images
Motivated by the fact that majority of the real images are captured by digital cameras;
we presented an approach that aims at discriminating synthetic images from digital
camera images based on the lack of artifacts due to digital camera acquisition process
by focusing on the imaging sensor's pattern noise [9]. Although each digital camera
has a unique noise pattern, since the underlying sensor technology remains similar, it
is very likely that pattern noise introduced by different digital cameras may have
common statistical properties. On the other hand, to avoid lack of real-life details,
such as textures and lighting, generation of PRCG requires methods that add noise to
simulate such phenomena in a physically consistent manner, e.g., ray tracing
algorithms. Similarly, it is very likely that the noise introduced by these methods to
have certain statistical properties. To test the discriminative ability of the approach, a
600 PRCG images and more than 600 digital camera images have been denoised and
the statistics of the resulting noise residues are analyzed. It is shown that the first-
order statistics, like skewness and kurtosis, for the two noise components are distinct
and the two types of image can be discriminated with an average accuracy of 75%.
Later, in [10], we extended this approach to also include demosaicing artifacts [5] and
also considered image quality metrics as another set of features to be used for
identification. These features are later incorporated with the features of [11-26] some
of the other state-of-the-art approaches and tested on 1.1 K PRCG and digital camera
images half of which were used for training. Test results show that the classifier
designed based on combined features achieves an average accuracy of 93%, which is
5% better than wavelet statistics based features alone [11].

4. Image Forgery Detection



4.1 Variations in Image Features: In this approach designate a set of features that are
sensitive to image tampering and determine the ground truth for these features by
analysis of original (unaltered) and tampered images. These values are stored as
reference values and later tampering in an image is decided based on deviation of the
measured features from the ground truth. These approaches most generally rely on
classifiers in making decisions. For example, to exploit the similarity between the
steganalysis and image manipulation detection, we proposed an approach utilizing
image quality metrics to probe different quality aspects of images, which could be
impacted during tampering [12]. In [13], image quality metrics are used in
cooperation with classifiers to differentiate between original and altered images based
on measures obtained between a supposedly modified image and its estimated
original (obtained through denoising) in terms of pixel and block level differences,
edge distortions, and spectral phase distortions. To ensure that the features respond
only to induced distortions due to tampering and not be confused by the variations in
the image content, in [12] metrics are also measured with respect to a fixed set of
images. Results obtained on 200 images by subjecting them to various image
processing operations at a global scale yielded an average accuracy of 80%. When the
same classifiers are given 60 skillfully tampered images, the detection accuracy is
obtained to be 74%.
Later, we compiled three fundamental sets of features that have been successfully
used in universal steganalysis and rigorously tested their sensitivity in detecting
various common image processing operations by constructing classifiers to identify
images that have undergone such processing [14][15]. The tested features include
image quality metrics, wavelet coefficient statistics, binary similarity measures, the
joint feature set which combines all the three sets, and the core feature set which is a
reduced version of joint feature set. Different types of classifiers built from these
features are tested under various image manipulations, like scaling up/down, rotation,
contrast enhancement, brightness adjustment, blurring/sharpening and combinations,
with varying parameters. Results on 100 locally tampered images, obtained from
Internet, show that joint feature set performs best with an identification accuracy of
around 90%.

4.2 Inconsistencies in Image Features: Image tampering very often involves local
sharpness/blurriness adjustments. Hence, the blurriness characteristics in the
tampered parts are expected to differ in non-tampered parts. In [16], we proposed the
use of regularity properties of wavelet transform coefficients to estimate
sharpness/blurriness of edges to detect variations and to localize tampering. The
decay of wavelet transform coefficients across scales has been employed for edge
detection and quality estimation purposes previously. The proposed method first
employs an edge detection algorithm to determine edge locations which is then
followed by a multi-scale wavelet decomposition of the image. Edge locations are
located by analyzing the edge image and corresponding maximum amplitude values
of wavelet sub-band signals are determined. Then, a linear curve is fitted to the log of
these maximum amplitude values and the goodness of the fit is used an indicator of
sharpness/blurriness value. The potential of the method in detecting variations in



sharpness/blurriness is demonstrated on both globally blurred images and tampered

images with local adjustments.
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Abstract processed using these basic operations. Then equipped with

these classifiers we apply them successively to a suspicious
In this paper we present a framework for digital image sub-image of a target image and classify the target as

forensics. Based on the assumptions that some processing doctored if a sub-image classifies differently from the rest of

operations must be done on the image before it is doctored, the image.
and an expected measurable distortion after processing an The rest of this paper is organized as follows: In Section
image, we design classifiers that discriminates between 2 we present a method to compute content independent
original and processed images. We propose a novel way of distortion measure that are used as features in the classifier
measuring the distortion between two images, one being the we design for image forensics. Statistical performance results
original and the other processed. The measurements are used are given in Section 3, with conclusions drawn in Section 4.
as features in classifier design. Using these classifiers we test
whether a suspicious part of a given image has been 2. Content Independent Features
processed with a particular method or not. Experimental
results show that with a high accuracy we are able to tell if Our goal is to design a feature based classifier that can
some part of an image has undergone a particular or a discriminate between doctored and original images. The
combination ofprocessing methods. features we use for the classifier should be such that they

reflect the distortions an image suffers from manipulation. A
1. Introduction classifier based on these statistical features would then

differentiate between the two cases of original versus
In today's digital age, the creation and manipulation of doctored images, even when casual observers cannot

digital images is made simple by digital processing tools that perceive them visually. In this section we present a technique
are easily and widely available. As a consequence, we can no for capturing image features that, under some assumptions,
longer take the authenticity of images for granted especially are independent of original image content and hence better
when it comes to legal photographic evidence. Image represent image manipulations.
forensics, in this context, is concerned with determining the Now, a doctored image could have been subjected to
source and potential authenticity of an image. many operations like scaling, rotation, brightness adjustment,

Although digital watermarks have been proposed as a tool blurring, enhancement etc. or some particular combination
to provide authenticity to images, it is a fact that the thereof Often doctoring may also involve cutting and pasting
overwhelming majority of images that are captured today do of another sub-image, which is skillfully manipulated and
not contain a digital watermark. And this situation is likely to rendered along the suture into the original to avoid any
continue for the foreseeable future. Hence in the absence of suspicion. Since image manipulations can be very subtle, the
widespread adoption of digital watermarks, there is a strong discriminating features one employs can easily be
need for developing techniques that can help us make overwhelmed by variations in the image content.
statements about the origin, veracity and authenticity of Keeping the above points in mind it is important to obtain
digital images. features that remain independent of the image content, so that

In this paper we focus on the problem of reliably they would only reflect the presence, if any, of image
discriminating between "doctored" images (images which are manipulations. This is due to the fact that in any feature
altered in order to deceive people) from untampered original based classification method, there is the risk that the
ones. The basic idea behind our approach is that a doctored variability in the image content itself may eclipse image
image (or the least parts of it) would have undergone some alterations present from the detector. Thus, it is desired that
image processing operations like scaling, rotation, brightness whatever features are selected, the detector respond only to
adjustment etc. Hence we first design classifiers that can the induced distortions during doctoring, and not be confused
distinguish between images that have and have not been by the statistics of the image content.



In a previous study, we had shown the potential of certain Now we take a different route and take as a reference a
image quality metrics in predicting the presence of unique image y. We then measure the distortions between
steganographic signals within an image [2, 1]. Similar to this x and x + E , using y and y + q/ as reference images,
approach, we employ mullle image quality metrics as the
underlying features of our classifier. The rationale for using Y + 77 represents the doctored version of the reference
mull le quality metrics is to probe different quality aspects of image. The relationship of these signals and the distortion
the image, which could be impacted during doctoring vis-A-vis the reference images y and y + q is illustrated in
manipulations. For example, some measures respond at pixel
level, others at the block level, yet others to edge distortions Fig. 1. In this figure, the length of the vector x y is simply
or spectral phase distortion. equal to M(x,y). The distance between the Is of the

Now the main reason image dependence creeps into the
classifier is due to the fact that the original image (ground-
truth) obviously is not available during the testing stage. vectors xy and x(y+q) is d=M(x,y)-M(x,y+
Therefore some "ground-truth" or reference signal must be and similarly d'=M(x+ g,y)-M(x+e,y+q7) denotes
created common to both the training and testing stages. In the distance between the ls of the dashed pair of vectors. For
our previous work on image steganalysis [1], we used a the case of the mean-square distortion it follows that:
denoised version of the given image as the ground-truth
reference. However, creating a reference signal via its own 2  

+

denoised version is obviously a content-dependent scheme. d=E[(y-x) -(y-x) +
In the rest of this section, we present an approach to 2(y-x)i7_,72]=E[2(y-x)i7_172]

preclude content dependency, by employing a reference
image in the feature extraction process. More specifically, let and
x denote a test image and x + 6 be its processed version,
and similarly let y and y + ir indicate the reference image
and is processed version. Furthermore, consider a generic d'= E[(x+6-y)2 -(X+E-y)2 +2(x+e-y)77-r72]
distortion functional M(a, b) between two signals a and b . = E[2(y - x)q + 27*e - 772]

A simple example of which being the well known mean-
A Now if one considers the difference of d and of d' one

square distortion function, M(a, b) = E[(a - b)'], with E can observe that one achieves content-independence, that is:
being the expectation operator. The classifier we design will
be based on the statistics of the difference of the distortions, A
as will be explained in the sequel. D= d'- d = 2E[;7*c] (2)

We now make two assumptions for the operation of our
classifier. First, we assume the processing operations
involved in image doctoring lead to additive distortion, i.e., y y + 77
that is, the altered signals can be represented as lop,4
x + - and y + q7. Second, we assume the additive distortions
of the test and reference images are not mutually orthogonal,

that is, E *r/}#0.
We first show that self-referencing, as employed in [1] X x-44'

causes content-dependent distortion. Let f be the specific
operation to obtain the reference image; for example in [1] Fig. 1: Configuration of the signal vectors: the original image
we used a denoising operation. In other words, we had x, its tampered version x + 6, the reference image y and its
y = f(x) = denoise(x). The outcomes of this operation are tampered version y + r7.

f f
given by x -- f(x), x + e -> f(x + E), respectively, for Let's consider another measure, the correlation coefficient,

original signal and its processed version. To illustrate the M A
point, for the case of the mean-square distortion one obtains: given by M(a,b)= E[ab]. One can easily show that:
M(x + 6, f (x + 6)) - M(x, f (x)) =

E[f(x + 6)2 + 2xc + 62 - d = E[xy]- E[x(y + 77)] = -E[x17] and

2(x +)f (x +c)-2xf(x) -f (x)2  ) d' = E[(x + e)y] - E[(x + c)(y + 7q)] = -E[x 7 l]- E[E*r-)]
A

which is content-dependent, because the signal terms x and so that D2 =d'-d =-E[E*n]. Again the difference of
f(x) survive in the difference of distortion functionals. For distortions is not a function of image content, x and y, but
content-independence, the above difference should be some ,
function of only the distortion term c and should not contain only of the product of distortions, e n.
x or any of signal derived from it.



We can show that this property holds more generally if the experiments, the entire image was subjected to the same type
second and higher order partials of the M(x,y) functional of operation, as listed in the first column of Table I.

To illustrate how well the selected features capture the
impact of the signal processing operations and how well they

D = M(x, y) - M(x, y + 17) - M(x + e, y) + M(x + 6, y + q) separate into clusters, we show scatter plots for brightness
adjustment, contrast enhancement and mixed sequential
processing in Figures 1 a, b and c, respectively. In these

and its variational differential figures the axes represent a subset of three features out of the
four used. Each figure displays the scattering of the three

&D = -Mx (x, y)& - My (x, y)3 y + MX (x, y)A features obtained from 200 unprocessed (blue), 200
processed (red) images. The axis denoted by dl and d2 are

+My (x, Y)Y + MX (X, y)Sxy"... the standard deviations of angular correlation measure and
ak+m M(xy) Czekanowski similarity measures respectively. Third axis d3

where Mxk y (x, A = axkaym [3]. This expression is the standard deviation of another correlation measure.
In a second set of more realistic experiments, we

becomes: addressed the testing of "doctored images". We doctored 16
images by either inserting extra content or replacing the

3D =M x,y)uxry+high order terms... (3) original content. To make them look like natural and avoid

If the higher order partials of M(x,y) are constant (or zero, any suspicion, the inserted content had to be resized, rotated
and brightness adjusted skillfully before pasting it to the

as in the cases of the mean-square distortion and correlation ig htn e ss wejhad to blur e bloik b ou the

coefficient), then the content-independence condition holds. image. In some cases we had to blur the block boundaries
after pasting. While resizing and rotation were used in every
doctored image, we had to do brightness adjustment only in a

3. Experimental Results couple of images. We also obtained 44 doctored images from
Internet. We tested 60 doctored images against brightness

We selected four measures from the list of image quality adjustment, contrast enhancement and mixed sequential
measures presented in [1], using Sequential Floating Forward processing classifiers. The results of the tests are given in
Search (SFFS) algorithm. These three measures, as detailed Table II.
in the Appendix were the two first-order moments of the
angular correlation and two first-order moments of the Table II: Performance of the classifiers
Czenakowski measure. Image Alteration False False Accuracy

We then used a training set of original images and their Type Positive Negative
processed versions, as well as, the original and processed Brightness Adj. 31/60 3/60 69.2%
versions of the reference images. We used randomly selected Contrast Adj. 25/60 6/60 74.2%
reference images. A linear regression classifier was then Mixed Proc. 7/60 17/60 80.0%
designed using the statistics collected with the database of
images [3]. 4. Conclusions

The image alterations we experimented with were scaling,
rotation, brightness adjustment and contrast enhancement. In this paper we proposed a framework for digital image
We trained and tested classifiers for brightness adjustment forensics. First, we presented a novel way of content-
and contrast enhancement operations separately. In addition, independent distortion measurement within the framework of
we considered a mixture of alterations, which included image forensics. Second, content-independent distortion
scaling, rotation, brightness and contrast enhancements, and measurements were used as features in the design of
designed a classifier for mixed sequential processing. An classifiers. The performance results were encouraging as we
image database was formed by selecting images from [4] in were able to discriminate a doctored image from its originals
order to carry out the simulations. The database in [4] with a reasonable accuracy.
contains a rich variety of 2000 images, from which 200 were There is significant amount of work that still needs to be
chosen randomly. Half of the images were used in the done. We need to perform more extensive testing of our
training and the remaining in testing, classifier. The doctored images we used had a manipulated

block sizes that were at least a 100 pixel wide. We need to
Table 1: The performance of the classifiers create test data with smaller manipulations. Also, we need a

Image Alteration False False Accuracy data set of high quality manipulations as opposed to the ones
Type Positive Negative we generated just for preliminary testing.

Brightness Adj. 0/100 23/100 88.5% We are also investigating a larger variety of features and
Contrast Adj. 6/100 30/100 82% the use a more sophisticated classifier as compared to the
Mixed Proc. 5/100 12/100 91.5% simple linear classifier we use here.

The classification accuracies of the detectors designed
for specific operations are given in Table I. In these
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ABSTRACT r Was this image manipulated to embed a secret mes-
sage? That is, is this image a stego-image or a cover'-

An interesting problem in digital forensics is that given a image?

digital image, would it be possible to identify the camera

model which was used to obtain the image. In this paper
we look at a simplified version of this problem by trying to
distinguish between images captured by a limited number The above questions are just a few examples of issues
of camera models. We propose A number of features which faced routinely by investigation and law enforcement agen-
could be used by a classifier to identify the source camera cies. However, there is a lack of techniques that could help
of an image in a blind manner. We also provide experimen- them in finding authoritative answers. Although digital wa-
tal results and show reasonable accuracy in distinguishing termarks have been proposed as a tool to provide authentic-

images from the two and five different camera models using ity to images, it is a fact that the overwhelming majority of
the proposed features. images that are captured today do not contain a digital wa-

termark. And this situation is likely to continue for the fore-
seeable future. Hence in the absence of widespread adop-

1. INTRODUCTION tion of digital watermarks, we believe it is imperative to de-
velop techniques that can help us make statements about theIn the analog world, an image (a photograph) has generally origin, veracity and nature of digital images.

been accepted as a "proof of occurrence" of the depicted

event. In today's digital age, the creation and manipulation The problems faced in Image Forensics are extremely
of digital images is made simple by digital processing tools difficult and perhaps even hard to formulate in a clean and
that are easily and widely available. As a consequence, we simple manner. In this paper we look at one of the questions
can no longer take the authenticity of images, analog or dig- above, that is, given an image can we determine the model
ital, for granted. This is especially true when it comes to of the digital camera that was used to capture the image.
legal photographic evidence. Image forensics, in this con- This is a question that could be often faced during an in-
text, is concerned with determining some underlying fact vestigation. Although information about the camera model,
about an image. For example image forensics is the body of type, date and time of the picture are all saved by the camera
techniques that attempt to provide authoritative answers to in the header of the JPEG image, it is not possible to authen-
questions such as: ticate them. There has been some prior work on identifying

the camera used in acquiring a given image [1]. The identi-
"* Is this image an "original" image or was it created by fication is based on camera characteristics such as defective

cut and paste operations from different images? pixel locations, noise level, image format, and image head-
ers. However such approach is different from the proposed

"* Was this image captured by a camera manufactured technique in this paper, since it requires the original camera
by vendor X or vendor Y? used in image acquisition for evaluation.

* Did this image originate from camera X as claimed'? The rest of this paper is organized as follows. We start
At time Y? At location Z? by giving a brief introduction to digital cameras in Section

SDoes this image truly represent the original scene or 2. In Section 3, we propose an approach based on feature
waos ithdisitally trulrepredstodec the oginsewer? For extraction and classification for the camera source identifi-examplewas idg iscoffeestainactually tmre to deceive tcation problem by identifying a list of candidate features.
example, was this coffee stain actually a blood stain Experimental results for the two camera case are provided

in Section 4. We discuss future work and conclude in Sec-

This work was supported by AFRL Grant No. P30602-03-C-0091. tion 5.
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the camera, these operations are depicted by the big proces-
sor block shown in the figure I, which include color inter-

t,•, CFA ot,, P.oXc polation as explained before, gamma correction, color pro-

cessing, white point correction, and last but not least com-
pression. Although the operations and stagcs explained in
this section are standard stages in a digital camera pipeline,

WSi the exact processing detail in each stage varies from one
A M G M G U G manufacturerto theother, and even indifferentcameramod-

CL Y C Y cls manufactured by the same company. In the next section
I A l R l A " ' M G U a we will introduce a number of measures which try to cap-

GOB G 8 0 c y c y c v

OR 0 M G U ture these differences, and help us in classifying the images
8 B B 6 0 C Y c v originating from a number of cameras.

(b)(

3. IDENTIFYING MEASURES

Fig. 1. (a) Major stages of processing in a camera pipeline. One approach to the camera model identification problem
(b) CFA pattern using RGB values. (c) CPA pattern using is to determine a set of features that designate the charac-
YMCA values teristics of a specific digital camera, and then use those fea-

tures to classify obtained images as originating from a spe-
cific camera. Although the color image construction process

2. DIGITAL CAMERAS may vary extensively within different makes of digital cam-
eras 12], however, it is our belief that the output image is

Although much of the details on the camera pipeline are effected greatly by the following two components:
kept as proprietary information of the manufacturer, the gen- 1. CFA configuration and the demosaicing algorithm
eral structure and sequence of stages in the camera pipeline
seem to be the same in all digital cameras. To set the context 2. The color processing/transformation
for the work presented in later sections, in this section we
briefly review the more important stages in a digital cam- As a result of such processing the signal content of the RGB
era pipeline. It should be noted that most of the discussion bands will exhibit certain traits and patterns regardless of
in this chapter is inspired from the introduction to digital the original image content. In order to capture the differ-
cameras by Adams et. al. [2]. ences in the underlying color characteristics for different

The basic structure of a digital camera pipeline can be cameras we would need to examine the first, second, and

seen in figure 1(a). After light enters the camera through the possibly higher order statistics of the digital images pro-

lens, a set of filters are employed, the most important being duced by these cameras. Below we propose a total of 34
features as candidates that would aid in the classification of

an anti-aliasing filter. The CCD detector is the main com-

ponent of a digital camera. The detector measures the inten- cameras by make and model:

sity of light at each pixel location on the detectors surface. Average pixel value This measure is based on the gray
In the ideal case, a separate CCD would be used for each world assumption, which states that the average val-
of the three color (RGB) channels, but then the manufactur- ues in RGB channels of an image should average to
ing cost would be quite high. A common approach is to use gray, assuming that the images has enough color vari-
only a single CCD detector at every pixel, but partition it's ations. Thus the features are the mean value of the 3
surface with different spectral filters. Such filters are called
Color Filter Arrays or CFA. Shown in part (b) and (c) of Fig-
ure I are CFA patterns using RGB and YMCG color space e RGB pairs correlation This measure attempts to cap-
respectively for a 6 6 pixel block. Looking at the RGB ture the fact that depending on the camera structure,
values in the CFA pattern it is evident that the missing RGB the correlation between different color bands could
values need to be interpolated for each pixel. There are a vary. There are 3 correlation pairs, namely RG, RB
number of different interpolation algorithms which could be (3 features).
used and different manufacturers use different interpolation e Neighbor distribution Center of mass This measure is
techniques. calculated for each color band separately by first cal-

After color decomposition is done by CFA, a detector is culating the number of pixel neighbors for each pixel
used to obtain a digital representation of light intensity in value, where a pixels neighbor are defined as all pix-
each color band. Next a number of operations are done by els which have a difference of value of I or -1, from
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the pixel value in question. The obtained distribution
gives us an indication of the sensitivity of the camera 1

pipeline to different intensity levels. We have seen
that for a similar image two different cameras have a
very similar distribution but one is the shifted version
of the other. So we calculated the center of mass of
the neighborhood plot to catch that shift as a measure
(3 features). "

" RGB pairs energy ratio is important because it is used Fig. 2. The left image was obtained using the Sony DSC-
in the process of white point correction which is an P51, and the right image was obtained by Nikon E-2 100.
integral part of a camera pipeline. The calculated fea-

tures (3 catures) are: E= , E2 = E8",E = conducted a number of experiments. In the first experiment,

IB12 two different camera models were used, a Sony DSC-P51
" W d a I band a Nikon E-2100. Both cameras have a resolution of 2

* Wavelet domain statistics Inspired by Farid's work Megapixels. The pcue eetknwt aiu eo

[3], w e decom posed each co lor band of the im age us- lut ion, Ti e of 1600 12 0, n w ia h au o f us and th

ing separable quadratic min-or filters and then calcu- lution, size of 1600 1200, no flash, auto-focus, and the

lated the mean for each of the 3 resulting sub-bands other scttings set to the default values. Pictures were taken

(9 features). from the same scene by the two cameras. This is important
since for example if one camera was used to take pictures of

In addition to color features, different cameras produce natural scenery and one camera was used to take pictures of
images of different "quality". For example, we commonly buildings and urban scenery then we might be really detect-
notice quality difference between two camera models when ing the difference in textures of images and not properties

images obtained by them are examined visually, For ex- due to the camera source.
ample images obtained by one camera may be sharper but A picture data set was made by taking 150 pictures with
look darker. On the other hand images obtained by another each camera from both inside the university campus build-

camera may have better lighting and better color quality but ings as well as other sceneries in New York City; an exam-
are not as sharp as the images obtained by the fist camera. pie is presented in figure 2. Since the Nikon camera had a
These visual differences that we commonly see motivated slightly wider lens, the lens was slightly zoomed at times
us to employ a set of Image Quality Metrics (IQM) as fea- in order to get the same picture frame as the Sony camera.
tures to aid in distinguishing between cameras. Only optical zoom was used so that there would be no ef-

Image Quality Metrics are of utmost importance in pro- fects on any of the proposed measures. After collecting the
viding quantitative data on the quality of a rendered image data set, the proposed measures were calculated for each
[4]. IQM's have also been used previously by Memon et image. A SVM classifier was used in order to see the ef-
at. (5] in the steganalysis problem to distinguish between fectiveness of the proposed features. There are a number of
a set of clean and stego images. We used the same set of SVM implementations Available publicly, and we have used
IQM's for our studies in this paper. We can categorize the the LibSvm [6] package. A radial basis kernel was used.
set of IQM's used into three classes based on how the varia- The following steps were taken in order to design and test
tion between the filtered and original image is measured (13 the classifier
features): I. 2/5 of the 300 images were used in the classifier de-

"* the pixel difference based measures (i.e. mean square sign phase.
error, mean absolute error, modified infinity norm); 2. The obtained classifier was then used to classify the

"* the correlation based measures (i.e. normalized cross previously unseen 3/5 of the images.
correlation, Czekonowski correlation); 3. The training and testing steps explained above were

* the spectral distance based measures (i.e. spectral repeated 100 times, with a random subset used in each
phase and magnitude errors). step, in order to see the average classification accu-

racy.

The average accuracy obtained was 98.73%, and the

4. EXPERIMENTAL RESULTS corresponding confusion matrix could be seen in table 1.
In the process of our experiments we also noticed that the

In order to see the effectiveness of the proposed measures quantization table used by each camera was different, fur-
in classifying images originating from a digital camera, we ther it does also vary from one image to another even with

711



the same camera. Therefore we re-compressed all images
with compression quality set to 75, and then recollected the Table 3, The confusion matrix for 5 camera identification

statistics from the images, designed, and trained the clas- case. Predicted
sifier again. The average accuracy was 93.42%. the corre- I io oy[Canon Canon Canon1
sponding confusion matrix could be seen in table 2. 1 I (Sil0) I (S100) (S200)

Nikon 89.67 0.22 4.77 1.64 3.7

Table 1. The confusion matrix for 2 camera identification Sony 3.56 95.24 0.31 0.34 0.53,

case. Actual SI 10 7.85 0.6 78.71 4.78 8.04

Predicted S100 3.14 0.32 3.57 92.84 0.11

Nikon Sony' S200 5.96 2.27 7.88 0.23 83.63

Aca Nikon 9 02
Actual Sony 324 97.6 fier based on these features was then used to see how well

the measures could classify the images originating from two
cameras used in our experiments. We were also able to

Table 2. The confusion matrix for 2 camera identification achieve acceptable accuracy results after the images were

case after re-compressing the images with JPEG compres- re-compressed.

sion quality set to 75. We also showed experimental results with 5 different

Predicted camera models. Although initial results were encouraging,
Nikon Son the true value and performance of the proposed feature set

in identifying the camera model would be known when a

Actual Nikon . larger image data set is used. Such a data set needs to be
Sony j9.25 90.74 -large enough so that the images available from each camera

model cover a large range of texture and scenery. Another
In the second experiment we wanted to see how the pro- impbrtant research direction is to improve the proposed fea-

posed features preform when considering more than two tures which in turn could increase our classification accu-
cameras, we obtained 150 images from 3 different models racy.
(S100, S 110, and S200) of Canon Powershot camera. The
images were acquired randomly from the Internet and con- 6. REFERENCES
sist of different sceneries. These 3 models have the same
resolution of 2 Megapixels and the images from them have [I1] Z. J. Geradts, J. Bijhold, M. Kieft, K. Kurosawa,
the same size of 1600 1200 (same as the previous 2 cam- K. Kuroki, and N. Saitoh, "Methods for identification
eras studied). However the exact setting used at the time of of images acquired with digital cameras:" Proc. SPIE
capture was not known to us. The proposed statistics were Vol. 4232, p. 505-512, Enabling Technologies for Law
collected for the images obtained from the 3 new cameras, Enforcement and Security, 2001.
and then a multi-class SVM was used to classify data from
all of the 5 different camera models, with the same design [2] J. Adams, K. Parulski, and K. Spaulding, "Color pro-

"and testing stages discussed previously. The average accu- cessing in digital cameras," Micro, IEEE, vol. 18, pp.

racy was 88.02%, the corresponding confusion matrix could 20-30, Nov.-Dec 1998.
be seen in table 3. However, we should note that the size and [3] H. Farid and S. Lyu, "Detecting hidden messages using
texture diversity of data set being used in the case of 5 cam- higher-order statistics and support vector machines,"
eras, need to be improved for more accurate performance 5th International Workshop on Information Hiding.,
results. 2002.

5. CONCLUSION AND FUTURE WORK [4] I. Avcibas, B. Sankur, and K. Sayood, "Statistical eval-
uation of image quality metrics," Journal of Electronic

In this paper we examined the problem of identifying the Imaging, April 2002.

source camera of a digital image. Although the problem [5] 1. Avcibas, N. Memon, and B. sankur, "Steganalysis us-
stated in its full generality is difficult, we looked at a sim- ing image quality metrics." IEEE transactions on image
plified version of the problem where we would like to dis- ing i ag uaiy 2003.

tinguish between images from a limited number of camera

models. As one possible solution we proposed a number [6] C.-C. Chang and C.-J. Lin, LIBSVM: a library for
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ABSTRACT general solution to the complex problem of
authentication. Consequently, in order to determine

In this work, we focus our interest on blind source origin, veracity and nature of digital images, alternative
camera identification problem by extending our results approaches that do not require any prior knowledge of
in the direction of [1]. The interpolation in the color the original digital image need to be considered (blind
surface of an image due to the use of a color filter array authentication techniques). At the present time, however,
(CFA) forms the basis of the paper. We propose to there is a severe lack of techniques that could achieve
identify the source camera of an image based on traces these goals
of the proprietary interpolation algorithm deployed by a
digital camera. For this purpose, a set of image In this paper, we focus our interest on the source
characteristics are defined and then used in conjunction camera identification problem. That is, given an image
with a support vector machine based multi-class can we determine the digital camera that was used in
classifier to determine the originating digital camera. We capturing the image? It should be noted that all digital
also provide initial results on identifying source among cameras encode the camera model, type, date, time, and
two and three digital cameras. compression information in the image header; however,

it is not possible to authenticate these information. In this
1. INTRODUCTION regard, the success of blind image authentication

techniques rely on the validity of assumption that all
The advances in digital technologies have given birth to images produced by a camera will exhibit certain
very sophisticated and low-cost hardware and software characteristics, regardless of the captured scene, that are
tools that are now integral parts of our daily lives. This unique to that camera due to its proprietary image
trend has brought with it new issues and challenges formation pipeline. In our prior work [1], we studied the
concerning he integrity and authenticity of digital same problem and identified a set of image features by
images. The most challenging of these is that digital selectively combining the features based on image
images can now be easily created, edited and quality metrics [3] and higher-order statistics of images
manipulated without leaving any obvious traces of [4]. This approach essentially requires the design of a
having been modified. This in turn undermines the classifier that is able to capture the variations in the
credibility of digital images presented as news items or designated image features, introduced by different digital
as evidence in a court of law since it may no longer be cameras.
possible to distinguish whether an introduced digital
image is the original or not. As a consequence, one can Another promising approach in this area is made by
no longer take the authenticity of digital images for Lukas et al. [5]. In their work, sensor's pattern noise is
granted. Image forensics, in this context, is concerned characterized via wavelet-based image denoising. The
with determining the source and potential authenticity of reference noise pattern for each digital camera is
a digital image. obtained by averaging over a number of raw or high

quality JPEG images, and the source camera for a given
Digital watermarking has been introduced as a image is determined by correlating the noise pattern with

means for authenticating digital documents that are most the image itself. Alternatively, in the present work, we
likely to undergo various processing [2]. Although this exploit the fact that most state-of-the-art digital cameras,
approach enables the extractor to establish the degree of due to cost considerations, employ a single mosaic
authenticity and integrity of a digital image, it practically structured color filter array (CFA) rather than having
requires that the watermark be embedded during the different filters for each color component. As a
creation of the digital object. This limits watermarking to consequence, each pixel in the image has only one color
applications where the digital object generation component associated with it, and each digital camera
mechanisms have built-in watermarking capabilities, employs a proprietary interpolation algorithm in
Therefore, in the absence of widespread adoption of obtaining the missing color values. Our approach is
digital watermarks (which is likely to be the case in the inspired by the technique proposed by Popescu et al. for
(foreseeable future), watermarking cannot be offered as a image tamper detection [6]. The rationale for their



technique is that the process of image tampering very kernels with different sizes and shapes. The processing
often requires up-sampling operation (which in turn block shown in the Figure 1-a produces the final image
introduces periodic correlations between the image and it includes a number of operations which include
pixels), and they designated statistical measures to detect color processing and compression. Although the
such phenomena. operations and stages explained in this section are the

standard section of the digital camera pipeline, the exact
The rest of this paper is organized as follows. In processing detail in each stage varies from one

section 2, we briefly describe the image formation manufacturer to other, and even in different camera
process in digital cameras. The details for identifying models manufactured by the same company. It should
traces of interpolation are provided in Section 3. We also be noted that many components in the image
present our experimental results in Section 4. and formation pipeline of various digital cameras, (e.g., lens,
conclude in Section 5. optical filters, sensor) are produced by a limited number

of manufactures. Therefore, this should be taken into
2. IMAGE FORMATION IN DIGITAL CAMERAS consideration in associating image features with the

properties of digital cameras. However, interpolation
Although much of the details on the camera pipeline is (demosaicing) algorithm and the design of the CFA
considered proprietary information to each manufacturer, pattern remain to be proprietary to each digital camera
the general structure and sequence of stages in the manufacturer.
camera pipeline remains to be very similar in all digital
cameras. The basic structure of a digital camera pipeline In the next section we will describe how the
is shown in Figure 1-(a) [7]. After light enters the variations in color interpolation can be exploited to
camera through the lens, a set of filters are employed, the classify the images either originating from one camera or
most important being an anti-aliasingf ilter. The anti- the other.
aliasing filter is needed when the spatial frequency of the
scene being captured is larger than the distance between
the elements (pixels) of the charge-coupled device
(CCD) array.

The CCD array is the main component of a digital
camera, and it's the most expensive component. Each A
light sensing element of CCD array integrates the
incident light over the whole spectrum and obtains an
electric signal representation of the scenery. Since each Figure 1. (a) The more important stages of a camera
CCD element is essentially monochromatic, capturing pipeline are shown. (b) CFA pattern using RGB values.
color images requires separate CCD arrays for each color (c) CFA pattern using YMCA values.
component. However, due to cost considerations, rather
than using multiple arrays, the CCD array is arranged in 3. IDENTFYING TRACES OF INTERPOLATION
a pattern by using different spectral filters, typically red,
green and blue (RGB). This mask in front of the sensor In [6], Popescu et al. employed Expectation/
is called the color filter array (CFA). Since any given Maximization (EM) algorithm to detect traces of up-
CCD element only senses one band of wavelengths, the sampling to identify images (or parts of images) that
raw image collected from the array is a mosaic of red, have undergone resizing. The EM algorithm consists of
green and blue pixels Figures 1-b and 1-c display a CFA two major steps: an expectation step, followed by a
pattern using RGB and YMCG color space respectively maximization step. The expectation is with respect to the
for a 6x6 pixel block. unknown underlying variables, using the current

estimate of the parameters, and conditioned upon the
Looking at the RGB values in the CFA pattern, it is observations. The maximization step then provides a

evident that each sub-partition of four pixels only new estimate of the parameters. These two steps are
provides information on two green, one red, and one iterated until convergence [8]. The EM algorithm
blue pixel values. Hence, the missing RGB values need generates two outputs. One is a two-dimensional data
to be interpolated for each pixel (demosaicing). The array, called probability map, with each entry indicating
interpolation is typically carried out by applying a the similarity of each image pixel to one of the two
weighting matrix (kernel) to the neighborhood around a groups of samples, namely, the ones correlated to their
missing value. There are a number of different neighbors and those ones that are not, in a selected
interpolation (demosaicing) algorithms and different kernel. On this map the regions identified by the
manufactories use different interpolation techniques, i.e. presence of periodic patterns indicate the image parts



that have undergone up-sampling operation. The other of images, we used the pictures that were taken from the
output is the estimate of the weighting (interpolation) same scene by two cameras.
coefficients which designate the amount of contribution
from each pixel in the interpolation kernel.

Since in a typical digital camera RGB channels are
heavily interpolated, we propose to apply a similar
procedure to determine the correlation structure present
in each color band and classify images accordingly. Our
initial experimental results [1] indicate that both the size
of interpolation kernel and the demosaicing algorithm
vary from camera to camera. Furthermore, the
interpolation operation is highly non-linear, making it
strongly dependent on the nature of the depicted scenery.
In other words, these algorithms are fine-tuned to (a) Nikon
prevent visual artifacts, in forms of over-smoothed edges
or poor color transitions, in busy parts of the images. On
the other hand, in smooth parts of the image, these
algorithms exhibit a rather linear characteristic.
Therefore, in our analysis we treat smooth and non-
smooth parts of images separately.

Since no a-priori information is assumed on the size
of interpolation kernel (which designates the number of
neighboring components used in estimating the value of
a missing color component) probability maps are
obtained for varying sizes of kernels. When observed in (b) Sony
the frequency domain, these probability maps yield to
peaks at different frequencies with varying magnitudes
indicating the structure of correlation between the spatial
samples. In designing our classifier we rely on two sets
of features: The set of weighting coefficients obtained
from an image, and the peak location and magnitudes in
frequency spectrum. In Figure 2, sample magnitude
responses of frequency spectrum of the probability maps
for three cameras (Sony, Nikon and Canon) are given.
The three responses differ in peak locations and
magnitudes.

4. EXPERIMENTAL RESULTS (b) Canon

An SVM classifier was used to test the effectiveness of Figure 2. Frequency spectrum of probability maps
the proposed features. There are a number of SVM obtained by three makes of digital cameras.
implementations available publicly, and we have used
the LibSvm package [9]. We have also used the A picture data set was made by obtaining 140
sequential forward floating search (SFSS) algorithm to pictures from each model. One fifth of these images
select the best features from the given set. were used for training. Then the designed classifier is

used in classifying the previously unseen 4/5 of the
In the first part of our experiments, we have used images. We used 75x75 pixel parts of theim ages for

two camera models: Sony DSC-P51 and Nikon E-2100. experiments. First we extracted features assuming a 3x3
The two cameras have both a resolution of 2 mega- interpolation kernel for both Sony and Nikon cameras.
pixels. The pictures were taken with maximum The accuracy is measured as 89.3%. The corresponding
resolution, size of 1600x1200 pixels, auto-focus, no confusion matrix is given in Table-1.
focusing, and other settings at default values. In order to
detect properties due to the camera source not the texture



Table 1. The confusion table for 2 cameras assuming a
3x3 interpolation kernel

Predicted 5. CONCLUSIONS AND FUTURE WORK

Nikon I Sony In this paper, we propose to identify the source camera
t Nikon 95.71 4.29 of a digital image based on traces of color interpolation

Actual Sony 17.14 82.86 in the RGB color channels. For this, we generate a

number of measures using EM algorithm. A classifier
Then we extract the features considering a was then is designed and used to determine how reliably

neighborhood of 4x4. Correspondingly the accuracy in the selected measures could classify the images
detection increased to 92.86 and the corresponding originating from the two and three cameras.
confusion matrix is in Table 2. The same experiment is
repeated for 5x5 neighborhoods which lead to an The proposed approach is another step taken in the
accuracy of 95.71%. The corresponding confusion direction of devising a set of techniques to solve blind
matrix is given in Table 3. As seen from the tables source camera identification problem. This method is,
accuracy improves with larger kernel sizes. These results unfortunately, limited to images that are not heavily
suggest that the actual size of the interpolation kernel compressed as the compression artifacts suppress and
used for CFA interpolation is not smaller than the remove the spatial correlation between the pixels due to
considered sizes which were empirically known to be CFA interpolation.
true [1].
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ABSTRACT enable us to make statements about the origin, veracity and
Since extremely powerful technologies are now available to nature of digital images.
generate and process digital images, there is a concomitant In a prior work [6], we studied the same problem of reliably
need for developing techniques to distinguish the original discriminating between "doctored" images (images which
images from the altered ones, the genuine ones from the are altered in order to deceive people) from untampered
doctored ones. In this paper we focus on this problem and original ones. The detection scheme was based on training a
propose a method based on the neighbor bit planes of the classifier based on certain image quality features, called also
image. The basic idea is that, the correlation between the bit "generalized moments". Scaling, rotation, brightness ad-
planes as well the binary texture characteristics within the justment, blurring, enhancement etc. or some particular
bit planes will differ between an original and a doctored combinations of them are typical examples of doctoring. A
image. This change in the intrinsic characteristics of the im- frequent image manipulation involves the pasting of another
age can be monitored via the quantal-spatial moments of the image, skillfully manipulated so to avoid any suspicion.
bit planes. These so-called Binary Similarity Measures are Since the image manipulations can be very subtle to eschew
used as features in classifier design. It has been shown that detection, the discriminating features can be easily over-
the linear classifiers based on BSM features can detect with whelmed by the variation in the image content. It is, thus,
satisfactory reliability most of the image doctoring executed very desirable to obtain features that remain independent of
via Photoshop tool. the image content, so that they would only reflect the pres-
Keywords: Digital image forensics, image processing, bi- ence, if any, of image manipulations.
nary similarity measures, classification. 2. BINARY SIMILARITY MEASURES

1. INTRODUCTION We assume that altering an image changes the correlation

The advances in digital technologies have given birth to between and within bit planes. Therefore the quantal-spatial
very sophisticated and low-cost tools that are now integral correlation between the bit planes of the original image will
parts of information processing. This trend brought with it differ from that of the bit planes of the doctored images.
new challenges concerning the integrity and authenticity of Consequently certain statistical features extracted from the
digital documents, in particular images. The most challeng- bit planes of images can be instrumental in revealing the
ing of these is that digital images can now be easily created, presence of image manipulations. Since each bit plane is
edited and manipulated without leaving any obvious traces also a binary image, we start by considering similarity
of having been modified. As a consequence, one can no measures between two binary images. These measures,
longer take the authenticity of images for granted, especially called Binary Similarity Measures (BSM) were previously
when it comes to legal photographic evidence. Image foren- employed in the context of image steganalysis.[l, 3]. In this
sics, in this context, is concerned with determining the paper we measure the correlation between bit planes num-
source and potential authenticity of a digital image. bered 3-4, 4-5, 5-6, 6-7 and 7-8 for the red channel and bit
Digital watermarks can serve in a scheme to authenticate planes 5-5 of the red and blue channels.
images. However, presently the overwhelming majority of Classical measures are based on the bit-by-bit matching
images that circulate in the media and Internet do not con- between the corresponding pixel positions of the two im-
tain a digital watermark. Hence in the absence of widespread ages. Typically, such measures are obtained from the scores
adoption of digital watermarks or concurrently with it, we based on a contingency table (or matrix of agreement)
believe it is necessary to develop image forensic techniques. summed over all the pixels in an image. In this study, we
We define image forensics as the art of reconstituting the set have found that it is more relevant to make comparison
of processing operations, called overall doctoring, that the based on binary texture statistics. Let
image has been subjected to. In turn these techniques will x,{x, k ..., K} and y, -- k = 1_..., K} be the



sequences of bits representing the K-neighborhood pixels, Table I. Binary Simil rity Measures
where the index i runs over all the MxN image pixels. For Similarity Measure Description
K=4 we obtain the four stencil neighbors and for K=8 we Sokal & Sneath Simi- a a d d
obtain the 8 neighbors. Let larity Measure I a + a+ b+ +

a+b a+c b+d c+dad

fI if xr =0 and x, =0 Sokal & Sneath Simi- m 2 = a d

2if xr = 0 and x, =I larity Measure 2 - (a+b)(a+c)(b+d)(c+d)

Cr 3 if xr = I and xs = 0 (1) Sokal &Sneath Simi- M3 2(a+d)
. if x, =1 and x, =1 larity Measure 3 2 (a+d)+b+c

Sokal & Sneath Simi- a

Then we can define the agreement variable for the pixel xi larity Measure 4 m4 = a + 2(b + c)

K Sokal & Sneath Simi- a + d
as: a/ =Id(c'-k j),5j=l...4, K=4, where larityMeasure5 min = b+

k=1 Kulczynski Similar- a

8(mnn1) m=n (2) ity Measure 1 M6 -

u, minn Ochiai Similarity a( + a
The accumulated agreements can be defined as: Measure m7 = a- -a )

a= 1 , b= -N 7, Binary Lance and Wil- b+c
MN MN liams Nonmetric Dis- M8 = 2a+b+'

1 , I similarity Measure
c=--• . , d=-- a,•4. (3) Pattern Difference bc

MN, MN, nm9 =

These four variables {a,b,c,d} can be interpreted as the one- (a+b+c+d)2

step co-occurrence values of the binary images. Obviously Binary Minimum His- 4

these co-occurrences are defined for a specific bit plane b, togram Difference dmio = Zmin(p7,,pýl')

though the bit plane parameter was not shown for the sake Binary Absolute His- 4
simplicity. Normalizing the histograms of the agreement togram Difference din, = P- P#+'I

scores for the bth bit-plane (where now = a(b)) one Binary Mutual Entropy-4

obtains for the j'th co-occurrence: din 2 =B-nr MP log pf+'
-,1p;=_' / •'O/ fJ a,! 3 ... 8 (4) 4 Pýlogp

J Binary Kullback dm,3= - PP l -
In addition to these we calculate the Ojala [4] texture meas- Leibler Distance '

ures as follows. For each binary image on the bt'bit-plane we OjalaMinimumHisto- di 4 = •_min(S ,S• )

obtain a 256-bin histogram based on the weighted K=8 gram Difference n= n

neighborhood as in Fig. 1. For each 8-neighborhood pattern, Ojala Absolute Histo- N 9

7 2iaggram Difference drnZ5 = S'ff -S!+'
the histogram bin numbered n = -xk2' is augmented n=1

k=0 15

by one. Ojala Mutual Entropy dmin6 =- S,1' log S!'
n=0

1 2 4 0 14 Ojala Kullback Leibler N Sff

12 8  x 8  Distance din 7 = "-XS logi E riIedm7 1 an-°ý

64 32 160 1 1

(a) (b) We have used three types of binary similarity measures be-
Fig. I (a) The weighting of the neighbors in the computa- tween bit planes as in Table 1.
tion of Ojala score. (b) An example: Ojala score First group:. The measures m, to m9 are obtained for
S=2+16+32+128=178 neighbor bits separately by applying the parameters mo-

ments {a,b,c,d} in (3) to the binary string similarity
Let the two normalized histograms be denoted as measures, such as Sokal & Sneath.

Sb n = 0...255 and b=3..7. The resulting Ojala Second group: The differences di,=mf-m;+1

measure is the mutual entropy between the two distributions i = 10....,13 are used as the final measures.
belonging to adjacent planes b and b+]: Third group: Measures dm14-dm17 are the neighborhood-

N weighting mask proposed by Ojala [4].
mb = -ZSblogS,+ 1. (5)

n=l



3. EXPERIMENTAL RESULTS Table IV. The erformance for brigness adjustment attack.
Brightness Method False False Accuracy

We computed binary similarity measures as features and used Adjustment Positive Negative (%)
Sequential Floating Forward Search (SFFS) algorithm to BSM 17/100 27/100 78
select the best features [5] and we have used Linear Regres- 40 Farid 60/100 28/100 58
sion Classifier for classification [7]. In our experiments we BSM 13/100 32/100 77.5
have built a database of 200 images. These images were 25 Farid 61/100 26/100 56.5
taken with Canon Powershot S200 camera. Notice that the BSM 19/100 28/100 76.5
images that were taken from the same camera in order to 15
detect alterations, but not the properties due to the camera Farid 67/100 27/100 53.5
characteristics. BSM 18/100 45/100 68.5

The image alterations we experimented with were scaling-up, 5 Farid 59/100 39/100 51
rotation, brightness adjustment, blurring and sharpening, all
implemented via Adobe Photoshop [8]. Half of the images We use Gaussian blur to blur the images with the scales of 1,
were used for training and the remaining in testing. In [2], 0.5, 0.3, 0.1. Corresponding results are represented in Table-
Farid et al. employed a higher order statistical model to dis- V.
criminate natural images from unnatural ones. We have Table V. The nerformance for blurring attack.
adopted their method, so that we did the same tests once with Blurring Method False False Accu-
their features and then with our features. In the Table's below Positive Negative racy (%)
the results according to features in [2] are denoted as "Farid". BSM 1/100 0/100 99.5
First, we scaled-up all the images with the scales of %50, 1.0 Farid 0/100 7/100 96.5
%25, %10, %5, %2, %1 and got 6 databases of 200 images. BSM 2/100 0/100 99
We trained a classifier on each database and tested if an im- 0.5 Farid 81/100 1/100 59
age is original or scaled-up. The results are in Table II. BSM 46/100 22/100 66

0.3
Farid 49/100 38/100 56.5

Table II. The performance for image scaling-up attack. BSM 24/100 62/100 57
Scaling- Method False Posi- False Accuracy 0.1

up tive Negative (%) Farid 69/100 31/100 50
BSM 2/100 0/100 99

%50 Farid 4/100 11/100 92.5 We sharpen the images and train a classifier to distinguish the

Farid 5/100 11/100 92 sharpened ones from the original ones. In Table VI, we show

BSM 18/100 3/100 89.5 the results of the sharpening classifier.
Farid 4/100 17/100 89.5 Table VI. The performance for sharening attack.

BSM 25/100 4/100 85.5 Method False False Accuracy

Farid 4/100 14/100 91 Positive Negative (%)
Farid 8/100 21/100 85.5 Sharpening BSM 4/100 9/100 93.5
BSM 32/100 8/100 80 Farid 36/100 19/100 72.5
Farid 17/100 12/100 85.5

As shown in the tables we trained more than one classifier
We rotated the images 450, 300, 150, 50, 10. Corresponding for each image alteration type at different settings of attack
results are in Table III. strength. However, it is not practical to devise a separate

classifier for each setting; hence we trained one classifier per
Table III. The performance for rotation attack. alteration type to operate in a range of attack strengths. For

Rotation Method False Posi- False Accuracy example we generate an image pool with 50 images from
tive Negative (%) %25, %10, %5, and % 2 scaled-up. We used half of the im-

BSM 2/100 0/100 99 ages for training and remained for testing. The results for
%50 Farid 4/100 11/100 92.5 generic classifier for various image alteration types are given

BSM 7/100 0/100 96.5 in Table VII.
%25 Farid 5/100 11/100 92 To test an image on only one classifier we made an image

BSM 18/100 3/100 89.5 pool by adding the same quantity of images that are scaled up
%10 Farid 4/100 17/100 89.5 with the scales of %50, %25, %10, %5, scaled down %50,

BSM 25/100 4/100 85.5 %25, %10, %5, rotated 45', 300, 150, 50, contrast enhanced
5 Farid 4/100 14/100 91 with the scales of 25,15,5, brightness adjusted with the

BSM 27/100 1 7/100 83 scales of 15, 25, blurred with the scales of 0.3, 0.5 and

%2 sharpened. Again half of the images were used for training
%2 Farid 8/100 21/100 85.5 and the remaining for testing. We call this classifier as ge-

neric-generic classifier. Corresponding results for this classi-
We adjusted the brightness of the images with the scales of fier is shown in Table VIII.
40, 25, 15, 5. Corresponding results are in Table IV.



Table VII. The )erformance of generic classifiers. Table XII. The performance of generic-generic classifiers for
Image Altera- Method False False Accu- image blocks that are captured from internet.

tion Type Positive Negative racy (%)
Scaling Up BSM 12/100 3/100 92.5 Method False Negative Accuracy (%)/o

Farid 6/100 17/100 88.5 BSM 48/100 52
Scaling Down BSM 29/100 13/100 79 Farid 47/100 53

Farid 17/100 18/100 82.5
Rotation BSM 13/100 45/100 71 4. CONCLUSIONS

Farid 16/100 14/100 85 In this paper we proposed a method for digital image fo-
Contrast En- BSM 1/100 48/100 75.5 rensics, based on Binary Similarity Measures between bit
hancement Farid 79/100 13/100 54 planes used as features. Then we designed several classifiers
Brightness BSM 3/100 46/100 75.5 to test the tampered or un-tampered status of the images. The
Adjustment Farid 76/100 17/100 53.5 performance results in detecting and differentiating a host of
Blurring BSM 6/100 18/100 88 attacks were encouraging as we were able to discriminate a

_ Fari~d~ 80/100 4/100 t----5-8-1 doctored image from its original with a reasonable accuracy.
We have assessed our methods vis-A-vis the closest competi-
tor image forensic detector in [2]. We outperform Farid's
detector especially in contrast enhancement and brightnessTable VIII. The performance of generic-generic classifiers. adjustment attacks. On the other hand, while we have better

Method False Positive False Negative Accuracy (%) ju

BSM 21/100 28/100 75.5 performance at stronger levels of manipulations, Farid out-
performs us at weaker levels. In this respect, the two

Farid 151100 31/100 77 schemes seem to be complementary; hence fusion of forensic
detectors at feature level or decision level must be envi-

To make our results more realistic, we addressed the testing sioned.

of "doctored images". We doctored 20 images by either in-

serting extra content or replacing the original content. To
make them look like natural and avoid any suspicion, the 5. REFERENCES
inserted content was resized, rotated or brightness adjusted
etc, before pasting it to the image. We take 2 untampered and [1] Avcibaý, i., N. Memon, B. Sankur. 2002. Image Stegaly-
one tampered block from every image, so we had 40 untam- sis with Binary Similarity Measures, Proceedings of Interna-
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Abstract
In this paper, we focus on the identification of

The techniques to validate the authenticity of source cell-phones. In other words, the problem is to
digital images are rather limited In this paper, we determine the make and the brand of the camera with
focus on blind source cell-phone identification which the given image was captured. The camera
problem. The main idea is that proprietary brand/made identification is based on the telltale
interpolation algorithm (involved due to the structure effects due the proprietary image formation pipeline. In
of color filter array [CFA]) leaves footprints in the fact, the main difference between cameras originates
form of correlations across adjacent bit planes of the from the color filter array that is used to interpolate
image. For this purpose, we define a set of binary between color pixels. In prior works [2], [3], source
similarity measures and image quality measures in camera identification problem was studied using
conjunction with a KNN classifier to identify the feature sets based on image quality metrics [4] and
originating cell-phone. We provide results on higher-order statistics [5].
identifying source among three cell-phones. All camera identification techniques exploit the fact

that state-of-the-art cell-phone cameras, due to cost

1. Introduction considerations, employ a single mosaic structured color
filter array (CFA) rather than having different filters

Image forensics is a new emerging field concerned for each color component [6]. This process is

with determining the source and potential authenticity illustrated in Fig. 1. As a consequence each pixel in the

of a digital objects and possibly reconstructing the image has only one color component associated with it,

history of manipulations effected. In this sense image and each digital camera employs a proprietary

forensics tries to meet the new challenge of interpolation algorithm in obtaining the missing color

safeguarding the authenticity of digital image and to values. This very proprietary interpolation algorithm

enable their continued usefulness as trustworthy leaves footprint like correlations between contiguous

documents and legal evidence. Digital images can bit planes of an image.

obviously be easily created, edited and manipulated In this work we use binary symmetry features,

with increasingly more sophisticated tools, which do which directly address correlation properties within and

not leave much of any perceptible trace, between planes. We consider also mixtures of other

Digital watermarking falls short to meet all categories of features, such Image Quality Measures

desiderata of this particular problem [1]. On the one (IQM) [4]. The rest of this paper is organized as

hand, watermarking requires that imaging devices be follows. In section 2, we briefly describe the similarity

equipped with built-in watermarking capabilities; on measures used in the classifier design, which were

the other hand, watermarks may not be able to classify selected from a set of measures described in [4], [7].

all types of attack. Forensic tools, however, can be The details of the technique and experimental results

envisaged to identify the nature of the manipulation. are provided in Section 3. We discuss future work and

Finally, forensic tools can be used concomitantly with present our conclusions in Section 4

watermarking in decision fusion schemes.



, = a(k,b)/"a(k,b). Based on these

k

normalized four-bin histograms, we define binary
Kullback Leibler distance as:

4 7I z R M a z 0 0 I I a m, =-yp_7 logp.L
C0 y C y C y n 8i

a Bi 0 C M M a

C B 0 C y C V y

o 0 R a M o Ua The second measure m2 is somewhat different in
Isla U .that we use the neighborhood-weighting mask proposed

• • by Ojala [8]. The histogram of the Ojala moments for
Fig. 1. (a) The more important stages of a camera different cameras is plotted in Fig. 4. For each binary
pipeline are shown [6]. (b) CFA pattern using RGB image we obtain a 512-bin histogram based on the
values. (c) CFA pattern using YMCA values, weighted neighborhood, where the score is given by:

7

2. Similarity Measures S = YZxi2' by weighting the eight directional
i_-0

Since each bit plane is also a binary image, we start neighbors as shown in Fig. 2. Defining S7 the count of
by considering similarity measures between two binary the nth histogram bin in the 7 th bit plane and Sn, the
images, that is, between quantal bit planes of images. corresponding one in the 8 th plane, after normalizing
The binary similarity measures were extensively these 512-bin histograms, we can define absolute
studied in [7]. We discuss here two of them for histogram difference as:
illustrative purposes. 511

Let's consider the 5-point stencil function and apply = S-Ss
it in the bit plane b: 2  -o=x

I if x,=0 and xn=0 128 25 4 8

2 if x,=0 and xn=1 64 32 16
3 if x,=I and xn=0 Fig. 2: The weighting pattern of the neighbors in the

4 if x, = I and xn = 1 computation of Ojala score. For example, the score
becomes S=2+ 4+8=14 in the example where E, N, NE

where the four arguments are defined as follows: The bits are 1 and all other bits are 0.

subscript c defines some central pixel and the The image quality measures were extensively
superscript n denotes one of the possible four neighbor studied in [4]. We discuss here one of them for

pixels. We sum acn (k, b) over its four neighbors (i.e. illustrative purposes. The Czenakowski distance gives

n runs over East, West, South and North neighbors) as a metric useful to compare vectors with strictly non-
well as over all the pixels (i.e., c runs over the MxN negative components, as in the case of color images:
pixels). After the summations the sub- and superscripts
can be omitted. The first argument k indicates one of 2 3 minkC Ithe four agreement scores 11,2,3,4) and the second1 M-1 N-I F2 min 0, A,6k 0,jA)

argument indicates the bit plane in which this M - -Y( k= (

computation is being done. Obviously MN {=o 0, A + J)Jk0,J

{a(k,b),k = 1,..,4} variables, that is, the agreement k=1

scores the central pixel - neighbor pixel transition where Ck (i, j) is (i, j)th pixel of the kth band of a color

types in a particular bit plane. Normalizing the image and Ck is the denoised version of the
agreement scores we obtain the score pdf s: corresponding ke" band color image. Denoising is

employed on the image to obtain a reference image to
calculate the metric.



In Fig. 3 we give the scatter plot of three cell-phone We collected 200 images from each one of them
cameras for three features, namely, ml, m2, m3 with maximum resolution, size of 640X480 pixels, at
measures. As can be seen the used features cluster well day light and auto-focus mode. Half of the 1800 images
enough for a successful classification, are used for training and the designed classifier is

tested with the other unseen half set of images. The
images were typical shots varying from nature scenes

.-.. motorala to close-ups of people. We experimented with the KNN

*~. * ny classifier (K=5) as well SVM algorithm of RBF
variety (T-2.0,e=0.001,C=8.0,cachesize=40). Sample

0.2 .. images of outdoors scenes in the image database are

shown in Fig. 4.

-0.02ý In a first exploratory experiment, we grouped cameras
0.0.4 in three-tuples and ran SFFS algorithm for each

.0."... ... ., combination for the best selection of features. Sample
10 confusion tables from these three-cameras groups of

"" 0.3 are given below (best, middle, worst case tables given):

0.1
0 0 Table 2a. Confusion matrix for the SonyK700,

MotorolaV3, Nokia6230 group. SFFS resulted in 5

Fig. 3. The scatter plot of three cell-phone cameras for features. Overall performance = 98.7%.
SonyK70 MotorolaV Nokia623

three similarity measures. 0 3 0

SonyK700 100 0 0
Overall we considered 108 BSM features and 10 IQM MotorolaV 0 100 0
features. The BSM features consisted of the 7-8, 6-7, 3
5-6, 4-5, 3-4 bit planes of the red channel and of the 51h Nokia6230 0 4 96
bit plane of the remaining blue and green channels.
These features were then selected using the Sequential Table 2b. Confusion matrix for the SonyK750,
Forward Feature Selection (SFFS) algorithm. MotorolaV3, Nokia6600 group. SFFS resulted in 3

features. Overall performance = 90.0%.
3. Experimental Results SonyK75 MotorolaV Nokia660

0 3 0

We have considered nine makes and/or brands of SonyK750 92 8 0

cell phone cameras, as detailed in Table 1: MotorolaV 8 873 8____ 87____ 5____

Nokia6600 1 8 91
Table 1. Types of cameras tested and their - 1 1 8 1 91

display characteristics. Table 2c. Confusion matrix for the SonyK750,
Acronym Make/Brand Colors Resolution MotorolaV3, Nokia7270 group. SFFS resulted in 7

(pixel) features. Overall performance = 81.3%.

MI MotorolaV3 260K 176 x 220 SonyK750 MotorolaV Nok 0727

M2 MotorolaV50 65K 176 x 220 SonyK75O 71 6 23
0

Ni Nokia5140 65,536 128 x 128 MotorolaV 1 97 2
N2 Nokia6230 65,536 208 x 208 3

Nokia7270 18 6 76
N3 Nokia6600 65,536 176 x 208 - 18 6

N4 Nokia7270 65,536 128 x 160
S1 SonyK700 65,536 176 x 220 The average performance of all 16 different three-tuple

S2 SonyK750 262,144 176 x 220 experiments was 93.4%.
LI LG5600 65K 128 x 160 In a more challenging experiment we tried to classify

the pool of nine camera types. Again the SFFS
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Chapter 1

IMPROVEMENTS ON SOURCE CAMERA-
MODEL IDENTIFICATION BASED ON CFA
INTERPOLATION

Sevinc Bayram, Husrev T. Sencar and Nasir Memon

Abstract The idea of using traces of interpolation algorithms, deployed by a dig-
ital camera, as an identifier in the source camera-model identification
problem has been initially studied in 2. In this work, we improve our
previous approach by incorporating methods to better detect the in-
terpolation artifacts in smooth image parts. To identify the source
camera-model of a digital image, new features that can detect traces
of low-order interpolation are introduced and used in conjunction with
a support vector machine based multi-class classifier. Performance re-
sults due to newly added features are obtained considering source iden-
tification among two and three digital cameras. Also, these results are
combined with those of 2 to further improve our methodology.

Keywords: Network forensics, wide area networks

1. Introduction

The advances in digital technologies have given birth to very sophis-
ticated and low-cost hardware and software tools that enabled easy cre-
ation, distribution and modification of digital images. This trend has
brought with it new challenges concerning he integrity and authenticity

of digital images. As a consequence, one can no longer take the authen-
ticity of digital images for granted. Image forensics, in this context, is
concerned with determining the source and potential authenticity of a
digital image.

Although, digital watermarking technologies 3 have been introduced
as a measure to address this problem, its realization requires that the

watermark be embedded during the creation of the digital image. Es-
sentially, this necessitates digital cameras to have built-in watermarking



2

capabilities. However, this approach has not been adopted by digital
camera manufacturers. Consequently, to determine origin, veracity and
nature of digital images, alternative approaches need to be considered.
The setting of this problem is further complicated by the requirements
that the methods should require as little as possible prior knowledge on
the digital camera and the actual conditions under which the image has
been captured (blind image authentication). At the present time, there
is a severe lack of techniques that could achieve these goals.

The underlying assumption for the success of blind image authenti-
cation techniques is that all images produced by a digital camera will
exhibit certain characteristics regardless of the captured scene, which are
unique to that camera, due to its proprietary image formation pipeline.
It should be noted that all digital cameras encode the camera model,
type, date, time, and compression information in the EXIF image header.
However, since this information can be easily modified or removed, it
cannot be used for authentication.

In this paper, we concentrate on source camera-model identification
problem by identifying the traces of proprietary interpolation algorithm
deployed by digital cameras. For this, we improve our results in 2 by
incorporating new methodologies to capture CFA interpolation artifacts
due to low-order interpolation.

The rest of this paper is organized as follows. In the following section,
existing approaches to image source identification problem are discussed.
In section 3, we briefly describe the image formation process in digital
cameras. In Section 4, the results of 2 are reviewed, and the details
of the improved approach are provided. We present our experimental
results in Section 5 and conclude in Section 6.

2. Current Solutions

In our prior work 1, we studied the source camera-model identification
problem by identifying and selectively combining a set of image features
based on image quality metrics 4 and higher-order statistics of images
5. This approach essentially requires the design of a classifier that is
able to capture the variations in the designated image features, due to
different digital cameras.

Another promising approach in this area is made by Lukas et al. 6.
In their work, an imaging sensor's pattern noise is characterized via
wavelet-based image denoising. The reference noise pattern for a partic-
ular digital camera is obtained by averaging obtained noise residual over
a number of high quality JPEG images captured by that camera. Then,
a given image is matched to a camera by correlating the noise pattern
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of the particular camera (which is claimed to be used for capturing the
image in question) with the individual noise pattern extracted from the
image itself.

In 2, we exploit the fact that most state-of-the-art digital cameras,
due to cost considerations, employ a single mosaic structured color filter
array (CFA) rather than having different filters for each color compo-
nent. As a consequence, each pixel in the image has only one color
component associated with it, and each digital camera employs a pro-
prietary interpolation algorithm in obtaining the missing color values
for each pixel. Our approach in 2 was inspired by the technique pro-
posed by Popescu et al. intended for image tamper detection 7. The
rationale for their technique is that the process of image tampering very
often requires up-sampling operation which in turn introduces periodic
correlations between the image pixels. To detect such phenomena they
designated statistical measures. In a similar manner, we have applied
variants of such measures to characterize the specifics of the deployed
interpolation algorithm.

In the present work, we further improve our approach in 2 by des-
ignating new features. Due to perceptual image quality considerations,
designers have to tailor the interpolation algorithm to deal with dif-
ferent qualities in an image, i.e., edges, texture features, etc. This es-
sentially requires introducing strong non-linearities to the interpolation
algorithm. However, in relatively smooth image parts, most well known
interpolation algorithms (e.g., bilinear and bicubic methods) will ensure
satisfactory quality, and very expensive algorithms are not needed. Our
premise in this work is that most proprietary algorithms in smooth im-
age parts will deploy simpler forms of interpolation, and therefore, they
can be captured more effectively (as opposed to busy image parts where
interpolation requires more careful processing). For this purpose, we
utilize the results of 8 where the periodicity pattern in the second order
derivative of interpolated signal is analyzed.

3. Image Formation in Digital Cameras

The structure and sequence of processing stages of image formation
pipeline in a digital camera remains to be very similar in all digital cam-
eras (despite the proprietary nature of the underlying technology). In a
digital camera, the light entering the camera through the lens is first fil-
tered (the most important being an anti-aliasing filter) and focused onto
an array of charge-coupled device (CCD) elements, i.e., pixels. The CCD
array is the main and most expensive component of a digital camera.
Each light sensing element of CCD array integrates the incident light
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over the whole spectrum and obtains an electric signal representation
of the scenery. Since each CCD element is essentially monochromatic,
capturing color images requires separate CCD arrays for each color com-
ponent. However, due to cost considerations, in most digital cameras,
only a single CCD array is used by arranging them in a pattern where
each element has a different spectral filter, typically one of red, green
or blue (RGB). This mask in front of the sensor is called the color filter
array (CFA). Hence, each CCD element only senses one band of wave-
lengths, and the raw image collected from the array is a mosaic of red,
green and blue pixels.

As each sub-partition of pixels only provide information about a num-
ber of green, red, and blue pixel values, the missing RGB values for each
pixel need to be obtained through interpolation (demosaicing). The in-
terpolation is typically carried out by applying a weighting matrix (ker-
nel) to the neighboring pixels around a missing value. Most generally,
each manufacturer uses a proprietary demosaicing algorithm i.e., kernels
with different sizes, shapes and different interpolation functions. This
is followed by a processing block which typically involves a number of
operations like color processing and compression to produce a faithful
representation of the scenery being imaged.

Although the image formation pipeline remains same for almost all
cameras, the exact processing detail at all stages vary from one manu-
facturer to other, and even in different camera models manufactured by
the same manufactures. It should also be noted that many components
in the image formation pipeline of various digital cameras, (e.g., lens,
optical filters, CCD array) are produced by a limited number of manu-
factures. Therefore, due to this overlap, different cameras may exhibit
similar qualities, and this should be taken into consideration in associ-
ating image features with the properties of digital cameras. However,
interpolation (demosaicing) algorithm and the design of the CFA pat-
tern remain to be proprietary to each digital camera manufacturer. In
the next section we will describe how the variations in color interpola-
tion can be exploited to classify the images either originating from one
camera or the other.

4. Identifying Traces of Interpolation

In 7, Popescu et al. presented a methodology to detect traces of up-
sampling to identify images (or parts of images) that have undergone
resizing by analyzing the correlation of each pixel value to its neighbors.
Since in a typical digital camera RGB channels are heavily interpolated,
we proposed to apply a similar procedure to determine the correlation
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structure present in each color band and classify images accordingly 2.
Our initial experimental results indicate that both the size of interpola-
tion kernel and the demosaicing algorithm vary from camera to camera
1. Furthermore, the interpolation operation is highly non-linear, making
it strongly dependent on the nature of the depicted scenery. In other
words, these algorithms are fine-tuned to prevent visual artifacts, in
forms of over-smoothed edges or poor color transitions, in busy parts of
the images. On the other hand, in smooth parts of the image, these algo-
rithms exhibit a rather linear characteristic. Therefore, in our analysis
we treat smooth and non-smooth parts of images separately.

4.1 Non-smooth Image Parts

We employ Expectation/ Maximization (EM) algorithm to detect
traces of interpolation 7. The EM algorithm consists of two major steps:
an expectation step, followed by a maximization step. The expecta-
tion is with respect to the unknown underlying variables, using the cur-
rent estimate of the parameters, and conditioned upon the observations.
The maximization step then provides a new estimate of the parameters.
These two steps are iterated until convergence 10. The EM algorithm
generates two outputs. One is a two-dimensional data array, called prob-
ability map, in which each entry indicate the similarity of each image
pixel to one of the two groups of samples, namely, the ones correlated to
their neighbors and those ones that are not, in a selected kernel. On this
map the regions identified by the presence of periodic patterns indicate
the image parts that have undergone up-sampling operation. The other
output is the estimate of the weighting (interpolation) coefficients which
designate the amount of contribution from each pixel in the interpolation
kernel.

Since no a priori information is assumed on the size of interpolation
kernel (which designates the number of neighboring components used in
estimating the value of a missing color component) probability maps are
obtained for varying sizes of kernels. When observed in the frequency
domain, these probability maps yield to peaks at different frequencies
with varying magnitudes indicating the structure of correlation between
the spatial samples. In designing our classifier we rely on two sets of
features: The set of weighting coefficients obtained from an image, and
the peak location and magnitudes in frequency spectrum. In Figure 1,
sample magnitude responses of frequency spectrum of the probability
maps for three cameras (Sony, Nikon and Canon) are given. The three
responses differ in peak locations and magnitudes.
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(a) (b) (b)

Figure 1. Frequency spectrum of probability maps obtained for (a) Nikon E-2100,
(b) Sony DSC-P51 and (c) Canon Powershot S200 digital cameras.

4.2 Smooth Image Parts

In 8, Gallagher showed that low-order interpolation introduces peri-
odicity in the variance of the second order derivative of an interpolated
signal which can be subsequently used to determine the interpolation
rate and algorithm of the signal. The proposed interpolation detection
algorithm first obtains the second order derivative of each row and av-
erages it over all rows. When observed in the frequency domain the
locations of the peaks reveal the interpolation rate and the magnitude
of the peaks determine the interpolation method.

We employed a similar methodology to characterize the interpolation
rate and the method employed by a digital camera. It should be noted
that most digital cameras encode and compress images in JPEG for-
mat. Due to 8x8 block coding, the DC coefficients may also introduce
peaks in the second-order derivative implying the presence of some form
of interpolation operation at a rate of 8. Therefore, in detecting the
interpolation algorithm, the peaks due to JPEG compression have to
be ignored. Figure 2 displays the magnitude frequency response for the
three models of digital cameras. The variation in magnitude and indi-
cates that there are differences in the deployed interpolation algorithm.
Therefore, the features extracted from each camera include the location
of the (peaks except for the ones due to JPEG compression), their mag-
nitudes, and the energy of each frequency component with respect to
other frequency components at all color bands.

5. Experimental Results

An SVM classifier was used to test the effectiveness of the proposed
features. There are a number of publicly available SVM implementa-
tions. Our work is based on the LibSvm package 11. We have also used
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Figure 2. Frequency spectrum of averaged second order derivatives corresponding to
(a) JPEG compression and the three models of digital cameras, (b) Canon Powershot
S200, (c) Sony DSC-51, (d) Nikon E-2100, with JPEG output images.

the sequential forward floating search (SFSS) algorithm to select the
best features from a given set of features.

In the first part of our experiments, we have used two camera models:
Sony DSC-P51 and Nikon E-2100. The two cameras have both a reso-
lution of 2 mega-pixels. The pictures are of size 1600x1200 pixels and
are obtained with maximum resolution, auto-focus, and other settings at
default values. In order to reduce the dependency on the scenery being
viewed, we used pictures that were taken from the same scene by two
cameras. A picture data set was made by obtaining 140 pictures from
each model. One third of these images were used for training. Then the
designed classifier is used in classifying the previously unseen 2/3 of the
images. We used 75x75 pixel parts of the images for experiments. Based
on the variance of each block the image is partitioned into smooth and
non-smooth parts by an exhaustive search.

First we extracted features assuming a 3x3 interpolation kernel for
both Sony and Nikon digital cameras. The accuracy is measured as
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Table 1. The confusion table for 2 cameras assuming a 3x3 interpolation kernel

Predicted

Nikon Sony

Actual Nikon 95.7% 4.3%

Sony 17.1% 82.9%

Table 2. The confusion table for 2 cameras assuming a 4x4 interpolation kernel

Predicted

Nikon Sony

Actual Nikon 91.4% 8.6%

1 Sony 5.7% 94.3%

Table 3. The confusion table for 2 cameras assuming a 5x5 interpolation kernel

Predicted

Nikon Sony

Actual Nikon 94.6% 5.4%

Sony 3.6% 96.4%

89.3%. Then, we extracted the features considering a neighboring 4x4
pixels. Correspondingly the accuracy in detection increased to 92.86%.
The same experiment is repeated for 5x5 neighborhoods which lead to
an accuracy of 95.71%. The corresponding confusion matrices are given
in Tables 1, 2, and 3, respectively. As seen from the tables accuracy
improves with larger kernel sizes. These results suggest that the actual
size of the interpolation kernel used for CFA interpolation is not smaller
than the considered sizes which were empirically known to be true 1.
Similar performance results are also obtained from smooth image parts
using the features based on periodicity in the second order derivatives.
Table 4 displays the accuracy for the two camera case. It is seen that
the latter set of features do not prove as reliable as the former set of
features.

In order to see how the proposed features perform for the case of
three-cameras, we also obtained a set of images acquired by a Canon
Powershot S200. In this case, the images were downloaded from internet
and consist of different sceneries. In a similar manner, we extracted the
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Table 4. The confusion matrix for 2 cameras based on periodicity in the second-order
derivative

Predicted

Nikon Sony

Actual Nikon 86.9% 13.1%

Sony 23.3% 76.7%

Table 5. The confusion table for 3 cameras assuming a 5x5 interpolation kernel

Predicted

Nikon Sony Canon

Nikon 85.7% 10.7% 3.6%
Actual Sony 10.7% 75% 14.3%

Canon 0% 10.7% 89.3%

Table 6. The confusion table for 3 cameras based on periodicity in the second-order
derivative

Predicted

Nikon Sony Canon

Nikon 76.8% 8.9% 14.3%

Actual Sony 12.5% 76.8% 10.7%

Canon 19.6% 10.7% 69.6%

features described in Sections 3.1-2 and used SVM and SFSS to classify
three cameras. When features are extracted from 5x5 neighborhoods,
the accuracy is measured as 83.33%, and corresponding confusion matrix
is provided in Table 5. When attempted to discriminate cameras on

the basis of features obtained from smooth image parts, the accuracy

dropped to 74.3% as shown in Table 6.
Finally, we have combined the two sets of features and repeated the

same experiment. In this case the accuracy of discrimination has in-

creased to 96% for the three camera case as shown in Table 7. The
increase in the accuracy indicate that the two sets of features capture

different characteristics of an image, thereby enabling better identifica-
tion of the source camera-model.
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Table 7. The confusion table for 3 cameras corresponding to combined set of features

Predicted

Nikon Sony Canon

Nikon 94.8% 1.5% 3.7%
Actual Sony 2.1% 95.3% 2.6%

Canon 0% 2.3% 97.7%

6. Conclusions

In this paper, we attempt improve our previous approach to source
camera-model identification problem. To detect traces of color interpo-
lation (artifacts) in the RGB color channels, we incorporate a number of
features tuned to capture the periodicity in the second-order derivatives
with the features obtained through using EM algorithm 2. A classifier
is then designed using the combined set of features and tested to deter-
mine the reliability of the selected features in discriminating the source
camera-model among two and three cameras. This method is, limited
to images that are not heavily compressed as the compression artifacts
suppress and remove the spatial correlation between the pixels due to
CFA interpolation.
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DIGITAL IMAGE FORENSICS FOR IDENTIFYING

COMPUTER GENERATED AND DIGITAL CAMERA IMAGES
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ABSTRACT In this work, we study a specific instance of this problem which
involves identifying whether a given image is a depiction of a real-

We describe a digital image forensics technique to distinguish im- life occurrence (and objects) or a fictitious realization. That is, dis-
ages captured by a digital camera from computer generated images. tinguishing digital images generated by a digital camera from the
Our approach is based on the fact that image acquisition in a digital ones generated by a computer graphics renderer. Our approach is
camera is fundamentally different from the generative algorithms de- motivated by the hypothesis that image acquisition in a digital cam-
ploycd by computer generated imagery. This difference is captured era includes many common processing stages (regardless of the spe-
in terms of the properties of the residual image (pattern noise in case cific digital camera used in capturing the image) leaving a unique
of digital camera images) extracted by a wavelet based denoising fil- signature in certain properties of the resulting image which may not
ter. In [1], it is established that each digital camera has a unique necessarily be present in synthetically generated images. This is be-
pattern noise associated with itself. In addition, our results indicate cause the methodology governing the generative algorithms is fun-
that the two type of residuals obtained from different digital cam- damentally different from the image acquisition pipeline in a dig-
era images and computer generated images exhibit some common ital camera. Although this approach by itself cannot fully address
characteristics that is not present in the other type of images. This the source identification problem (as it cannot resolve cases where
can be attributed to fundamental differences in the image generation a digital camera is used to capture the image of computer generated
processes that yield the two types of images. Our results are based a ndigialcamera is ue torap t the image o m renerteon iage geeratd b th Maa an 3DStuio ax sftwreand scene and objccts), it is an important component of image forensics
on images generated by the Maya and 3D Studio Max software, and techniques.
various digital camera images. In [I], Lukas et al. argued that images from a given digital cam-

era exhibit a unique stochastic characteristic due to the pattern noise
Index Terms: Computer graphics, image analysis, image classi- introduced in the medium to high frequency content of an image dur-

fication, image processing,. ing image acquisition. Furthermore, they showed that the presence

of the pattern noise can be detected by correlative processing, and
1. INTRODUCTION an image can be uniquely associated with a digital camera through

the known reference error pattern. In their work, the reference er-
Advances in digital imaging technologies raised new issues and chal- rorpattern of a specific digital camera is the averaged noise pattern,
lenges concerning the integrity and authenticity of digital images. obtained through image denoising, from a number of images cap-
Digital images can now be easily created, edited and manipulated tured by that camera. In this paper, we exploit the fact that, although
without leaving any obvious traces of such operations. These ca- each individual camera has a unique noise pattern associated with
pabilities undermine the credibility of digital images in all aspects. it, pattern noise introduced by different digital cameras may have
Digital image forensics is an emerging research field aiming at de- common (statistical) properties, as the deployed image sensor tech-
termining the origin and potential authenticity of a digital image. nology remains same, and that this common characteristic will not

One of the fundamental problems digital image forensics tech- be present in computer generated images. Similarly, computer gen-
niques attempt to solve is the identification of the source of a digital erated imagery may exhibit certain common properties, due to the
image. That is, to determine by what means a digital image has use of same generative algorithms, that are not shared by the digital
been created, e.g., digital camera, scanner, generative algorithms, camera images. Based on this argument, we investigate the poten-
etc. Possible solutions to the problem of image source identification tial of distinguishing computer generated images from digital camera
may include one of the below approaches: images.

I. Verifying and evaluating the image statistics that are inherent
to real-life sceneries and objects. 2. METHODOLOGY

2. Detecting, classifying and measuring the qualities of spatial
structures (i.e., color, texture and edge structures) in an im- As discussed in [1], for a given digital camera, the pattern noise
age. remains approximately unchanged (regardless of the captured illu-

3. Identifying signatures to detect traces of certain types of oper- mination from the scene) in each image, and it can be modeled as

ations used in image generation process by possible sources. an additive noise. Furthermore, it is known that the pattern noise
is relatively stable over the camera life span and a reasonable range

*Electrical and Computer Engineering Department of conditions such as temperature. Because of these properties we
tComputer and Information Science Department assume that traces of pattern noise is a reliable indicator that can be



used to distinguish digital camera images from computer generated the reference error pattern and the rest is used for test and evaluation
images. of the method.

To test the validity of the assumption that digital camera and To establish the presence of a statistical difference between com-
computer generated images are the result of two fundamentally dif- puter generated and digital camera images, we measured the statis-
ferent set of operations and that common properties of pattern noise tics of each residual image for four different pairs of image sets.
associated with each type of images is not shared by the other type, Each pair contains two sets of 100 Maya and digital camera images.
we take an approach similar to that of [1]. For this purpose, we The results are shown in Figure 2 and 3. We observed that the mean
generate a reference noise pattern for a class of computer generated value of extracted noise from camera images is relatively higher. It
images using a given algorithm. We obtain the reference pattern by is also observed that noise extracted from Maya images exhibit a
applying a wavelet based denoising filter [2] to extract the noise from relatively lower skewness (higher kurtosis).
each image. The denoising filter is derived from a bivariate statisti-
cal model that takes into account the statistical dependency between o 0
adjacent wavelet coefficients of natural images. This form of denois-
ing filter is one of the best filters available for image denoising in the .. . o. J o,

literature. Figure 1 shows the system block diagram. The denoising 0. oa:
filter is locally adaptive[3] and includes a robust median estimator o o
[4] in order to estimate the noise variance. Let X denote an image -. 4 -, , - - ..

and X denote its denoised version. The pattern noise, e, is given by

e = X -k (1)

The reference noise pattern, eref, is obtained by averaging over o° o o

X Fig. 2. Measured statistics of residual image for different sets of
X > Denoising Filter X -images.

e

Fig. 1. System Model. .

many instances of e., o
The identification of image type is established by correlating the o. 0 0

image residual with the pre-computed reference error pattern asso-
ciated with a generative algorithm. To classify a given image X
as digital camera or computer generated image, the normalized cor- o, • '
relation between the residual image, e (1), and the reference error 0 j o ,
pattern of a generative algorithm is computed as ,0

(e - E[e])(Erq - E[Er.f]) (2).... ....... ..... ..0 ..

lie - E[e]llEr.f - E[EefII (
Fig. 3. Measured statistics of residual image for different sets of

where E[ ] is the expected value, images.

3. RESULTS We showed above the statistical variations in camera and Maya
images. This statistical variation should be preserved in the refer-

In our experiments we consider two sets of computer generated dig- ence error pattern generated from multiple images. In the next ex-
ital images. The first set is generated using Maya software, whereas periment we computed correlation of the reference error pattern with
the other set is generated using 3D Studio Max software. The im- error extracted from test images. In our experiments, correlation of
ages were obtained from publicly available websites [5] where it is image residual with reference patterns is considered for three differ-
explicitly noted that the images were generated by Maya and 3D ent cases. In the first case, the reference pattern is generated con-
Studio Max software, and other software suites, like Photoshop, for sidering all subbands (HL, LH, and HH) in the wavelet transform
texture design purposes. The digital camera images are also obtained domain. In the second case, the reference error pattern is generated
form publicly available websites [6] and divided into three sets. The by excluding the HL subband. In the last case, only the HH sub-
first two sets are from a personal folder and involve images taken band is considered when the reference error pattern is generated. In
by two different cameras. The first set of images are taken by the this paper we show results from the experiment that involves all the
(same) FUJI FinePixS2 Pro Digital Camera, whereas the second set high-frequency wavelet coefficients. Figures 3 shows the correlation
of images arc taken by the Kodak DCS Pro SLR/n Digital Camera. of the test images with the reference error pattern each obtained from
The third set involves images (each) taken by different digital cam- the 300 images taken by different cameras. The figures depict that
eras (from different folders) including various digital camera makes the test camera images exhibit stronger correlation with the reference
and models. In all cases, some of the images are used for obtaining error pattern. On the other hand, we observed that Maya and 3D



Studio Max test images have weaker but non-zero correlation to the
reference error pattern. The statistics (histogram) for the computed
correlation coefficient are as shown in Figure 4. The mean values for ..
the computed correlation arc (0.0319, 0.0395) for Maya and 3D Stu-
dio Max test images respectively. On the other hand, the mean of the
correlation of the camera test image is 0.1228. This further validates
the argument that digital cameras have common stochastic features
that may not be present in computer generated images. To measure

Fig. 6. ROC curves to measure false positive rate, (a) Maya, (b) 3D
Studio Max.

using reference error patterns obtained from the 300 images taken by

"".. _ FUJIFinePix S2 Pro and Kodak DCS Pro SLR/n respectively. Fig-
4' ;ures 6 and 7 show the corresponding correlation for each reference

__ error pattern with the test images. Parallel to the results in [I], we
"-- observed that test images (from the same camera) showed stronger

correlation with the reference error pattern. Similar to the previous
Fig. 4. Correlation of test image residual with reference error pattern experiment, Maya and 3D Studio Max images exhibit weaker but
obtained from different cameras, non-zero correlation. We did a similar experiment by obtaining a

4 I. °° .-a.. ,, - -,* * ° • *

(a) Histogram of correlation of camera test image.
Fig. 7. Correlation of test image residual with camera reference error
pattern.

S.....::,• -. ... .. ..

(b) Histogram of correlation of Maya test image. ,•• *•€ • • ,

J~patem.Fig. 8. Correlation of test image residual with camera reference error

Maya reference error pattern (em..v) using 300 images. The results
. . . . . .are shown in Figure 8. Similar to the previous two cases, a stronger

() Hcorrelation of the Maya reference error pattern with the test Maya
(c) Histogram of correlation of 3D Studio Max test image. images is observed. In agreement with our argument, the correlation

of the camera test images with the Maya reference pattern exhibit
Fig. 5. Correlation statistics of test image residual with multi-camera weaker but non-zero correlation. This is an indication that Maya im-
reference error pattern. ages also have a unique stochastic feature. The correlation statistics

is as shown in Figure 9. We also measure the false positive rate
the false positive rate of the above experiment, ROC curves were of the above experiment by generating ROC curves as is shown in
generated and are shown in Figure 5. We repeated the experiment Figure 10. We repeated the experiment using Maya reference error



"E I in capturing the common properties of the residual error in Maya
images.
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Fig. 9. Correlation of test image (different cameras) residual with 0 " 0

Maya reference error pattern. o ... .. . . .. o .. . .. ..

"Fig. 13. Correlation of test image correlation with two (different)
Maya reference error pattern, (a) Set I, (b) Set II.

4. CONCLUSION

In this paper, we argued that digital camera images exhibit a common
statistical property which is not present in computer generated im-

0 ,ages and vice versa. Based on this argument, we proposed a method
to differentiate between digital camera images from computer gen-

Fig. 10. Statistics of (histogram) correlation with Maya reference erated images.
error pattern, (a) Maya, (b) Cameras We observed that test Maya images exhibit higher correlation

with the Maya reference error pattern. The higher correlation in
Maya images indicates the presence of unique statistical properties

. ... ..... in Maya images.On the other hand, we observed low correlation with
the Maya reference error pattern when test images from a given cam-
era and multiple camera are used. We also showed consistency in
Maya reference error pattern using two sets of Maya images. Mixed
test images exhibit relatively higher correlation with the considered
digital camera reference error pattern compared to Maya test im-
ages. This further validates the argument that digital camera images
exhibit common statistical properties.

Fig. 11. ROC curve to measure false positive rate. 5. REFERENCES
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ABSTRACT noise is used to identify the source of an image. Sensor pat-
tern noise is caused by various factors, such as dust specks

A problem associated with digital single lens (DSLR) cam- on optics, interference in optical elements, dark currents, etc.
eras is sensor dust. This problem arises due to dust particles However, the high frequency component of the pattern noise
attracted to the sensor, when the interchangeable lens is re- can be modeled as additive noise and estimated by applying
moved, creating a dust pattern in front of the imaging sen- a wavelet based denoising to the captured image. Then, the
sor. Sensor dust patterns reveals themselves as artifacts on extracted noise residues from multiple images are averaged
the captured images and they become more visible at smaller to estimate the camera's noise pattern, i.e., reference pattern.
aperture values. Since this pattern is not changed unless the To identify the source of a given image, the noise residue of
sensor surface is cleaned, it can be used to match a given the image in question is correlated with the reference noise
image to source DSLR camera. In this paper, we propose patterns extracted from the camera.
a new source camera identification method based on sensor In this paper, a new method based on sensor dust charac-
dust characteristics. Dust specks on the image are detected teristics of DSLR cameras for image source identification is
using intensity variations and shape features to form the dust proposed. Essentially, the lenses on DSLR cameras are in-
pattern of the DSLR camera. Experimental results show that terchangeable and the sensor dust problem arises when the
the method can be used to identify the source camera of an interchangeable lens is removed, thereby opening the sensor
image at very low false positive rates.inecagallessrmodtrbypnngheesrarea to the hazards of dust and moisture. Once the lens is

taken off, the dust particles around the camera are attracted
1. INTRODUCTION to the imaging sensor by electrostatic fields resulting a dust

pattern on the surface of the sensor. (It should be noted that,

In today's digital age, the creation and manipulation of dig- the dust isn't actually sitting on the sensor itself, but on the el-
ital images is made simple by digital processing tools that ement just in front of it. These elements include the dichroic
are easily and widely available. As a consequence, we can mirror or low-pass filter.) This dust pattern can be seen as
no longer take the authenticity of digital images for granted. small specks, in the form of localized intensity degradations,
Today, there is a severe lack of techniques and methodolo- all over the image under some certain conditions, especially
gies for verifying the integrity of digital images. Due to this with small aperture settings. In figure 1 a sample imagel

asymmetry, digital images appear to be the source of a new taken with DSLR camera with dust specks are shown. Al-
set of problems. This is especially true when it comes to le- though it is very hard to locate dust positions, when block-
gal photographic evidence. Image forensics, in this context, wise local histogram equalization is applied to each pixel in
is concerned with uncovering some underlying fact about an the image, sensor dust artifacts can be easily seen.
image. To address these problems, more recently, several dig- Another aspect of the problem is that sensor dust is cu-
ital image forensics techniques have been proposed for both mulative. That is, with every change of the lens, more dust is
image forgery detection [1, 2, 3, 4, 5] and image source iden- likely to be added to sensor, thereby worsening the problem
tification [6, 7, 8, 9, 10, 11, 12]. over the time. Furthermore, most state-of-the-art digital cam-

In image source identification problem, one of the most eras do not offer a built-in solution for removal of sensor dust.
pressing concerns is the ability to match an image to its source On the other hand, the process of sensor cleaning, through
camera. In this context, the most promising approach is pro- swabbing, brushing, using compressed air, brings with it the
posed by Lukig, et. al. [12]. In their method, sensor's pattern risk of scratching the sensor. Therefore, sensor dust is a per-

sistent problem that appears to be getting widespread with the
*This work is supported by National Institute of Justice grant 2006-

92251-NY-IJ. I image is downloaded from www.pbase.com



creasing aperture values. This is due to the fact that dust spots
stand a distance from the actual sensor and wide aperture val-
ues let more light to go around the dust spots. Hence the
shadow of the dust (speck) on the color sensor shows up in
the image as a blurry, soft speck. On the contrary, at small
aperture values, the light source can be assumed to be a small
pinpoint spotlight as a result of which specks become dark
and hard edged [13, 14]. In Fig. 2, the dust spots for two
different aperture settings, f/22 and f/32, are shown. It can
be seen that the change in f-number affects the intensity and
radius of the dust speck and with the increase in f-number
(aperture gets smaller) the dust speck gets more darker and
smaller.

!-7

Fig. 2. Dust specks with different apertures, f/22(left),
f/32(right)

Fig. 1. Sample image taken by NikonD70, f-number:F/14 Dust speck (f/22)
(up), local histogram equalization result (down). The black
boxes show the location of dust specks in the image

150.
advent of DSLR cameras due to superior image quality they
provide. It should be noted that since sensor dust problem is
not intrinsic to cheaper consumer cameras, the detection of 100
any sensor dust in a given image can be evaluated as a proof
of the image source being a DSLR camera. Moreover, with
the knowledge of dust positions/pattern in a given image and 50,
camera, it is possible to associate images with a particular
DSLR camera.

In the following sections a method to locate dust specks 40
in a given image is described. This is primarily achieved by 40
comparing the dust positions of a given image with those of 20
the particular DSLR sensor dust pattern. The efficacy of the -
proposed method is substantiated by experimental results. 0 0

2. SENSOR DUST CHARACTERISTICS AND THEIR
FORENSIC USE Fig. 3. Intensity loss due to dust speck (f/22)

Sensor dusts reveal themselves in photos taken with smaller To exploit this vulnerability of DSLR cameras, we detect
apertures settings and they become less noticeable with in- traces of sensor dust in images and use it for source identifi-



cation. For this purpose, we initially aim at determining the
presence of dust specks on an image. Due to difficulty in
discriminating effects of dust on images from the image con-
tent, specifically in the textured and parts with high frequency
content, the core element of the method is the dust detection.
In other words, the crux of the method lies in dust model-
ing which essentially determines the rate of false-positives-a
crucial parameter concerning its forensic use.

Although some DSLR cameras have anti-dust mechanisms, Fig. 4. Dust speck
they can not keep the sensor surface clean completely. Some
camera manufacturers also provide post-processing tools to
remove dust specks on images based on dust template pho- of dust specks based on cross-correlation results obtained un-
tos taken with high aperture settings. In the market there are der different o- values ranging from 1 to 3. The sigma value
also a couple of commercial softwares which detect and re- which produces the maximum cross-correlation is chosen as
move dust traces from a single image. Nevertheless all these the dust model parameter, and the corresponding correlation
tools have high false positives. There are also several patents output is used to detect dust specks. Once the correlation out-
for dust speck detection and removal 114, 15, 16]. In [14] put is computed, the local maximums higher than a empiri-
local intensity variations in uniform regions are assumed as cally determined threshold (such as 0.4) are labeled as dust
dust spots. In [15], likely dust specks are detected by tak- candidates. In order to eliminate false positives, dust candi-
ing the second order derivative of the image and the peaks dates in highly detailed regions are ignored.
of the derivatives are assigned as dust positions. In [16] dust
positions are detected by taking first-order-derivative and ap- Dust Model

plying some post-processing operations. However, our initial
experimental studies showed that gradient based dust spec de-
tection methods suffer from relatively high error rates (miss 0

and false positive probabilities). Therefore, in this work, we
-0.05,

did not consider to use any gradient based search method to
locate dust positions. Our sensor dust detection method is de- _.
scribed below.

-0.15

2.1. Dust model -0.2 ,
30

Our sensor dust model relies on the observation that sensor 25

dust has two major characteristics: (a) causing an abrupt change 10
on the intensity surface (e.g., intensity loss) depending on
the aperture size; and (b) appearing most generally the form 0 0

of rounded shapes, see figures 2 and 3. To model the in-
tensity degradation due to sensor dust we utilize a 2D in-
verse gaussian function with a particular standard deviation
and gain. It should be noted that as f-number increases the
diameter of the dust spot in the image decreases and the in-
tensity loss in the dust spot increases. Moreover, the shape 2.2. Contour analysis
of the intensity loss becomes more kurtotic. Since the dimen-
sions of the dust is related with aperture, its is also essential to gh cross- correlation etges an thtred
detect f-number to locate dust specks properly. (In our work gions, it may produce high correlations on edges and textured
we assume the EXIF data of the image is not available.) regions. In order to reduce this sort of false positives, we ap-

To locate the position of the dust speck, we apply fast ply further analysis on each dust candidate based on their lo-normlizd coss-orrlaton 17] ithestmate dut mdel cal contour characteristics. For each dust candidate we com-
normalized cross-correlation [17] with estimated dust model pute their contour map as shown in Fig. 7. Apart from the cor-
as in equation 1. relation output, we locate the dust center by analyzing the lo-

1 2 2 cal minimums which have maximum number of closed loops
dustmodel(z, y) = -G • e (1) around. Then, the intensity loss in the possible dust speck re-

gion and the eccentricity of the dust contour, which indicates
In the equation G refers to the intensity loss. The diameter of how contour shape resembles to a circle, are computed. These
the dust speck is controlled by a. We estimate the diameter parameters then combined together to compute a normalized



Cross-Correlation Output posed dust detection method is applied to create dust
pattern of the camera.

0.8 .. Images acquired with the DSLR camera are available:
When the camera is not available but rather a number of
images taken by the camera is present, the dust points

0.4, "that are determined by correlation and through shape
characteristics in each image is superimposed together

0.2 .to form the dust pattern/template of the camera. Once
the template is created, a threshold is applied to the

o0 template to reduce the number of falsely labeled specks
' 40 in the dust pattern. The underlying idea of applying a

25 0 threshold to the template is that the actual dust specks
10" 10 1 should show up at least in two or more images. Since

5 the probability of getting a false dust candidate at the
same position in multiple images is very low, we expect
that false positives due to image content will be elim-

Fig. 6. Cross-correlation output of dust speck in fig. 4 inated after thresholding. The dust candidates which
have higher confidence values than a fixed threshold are

confidence value of the contour region. If there is not any considered to represent the dust pattern of the camera.

significant intensity loss inside of the contour plot then the Finally, source camera identification model is realized by match-
confidence value is assigned to zero. After contour analysis, ing camera dust template with the estimated dust pattern of a
according to the confidence values, each candidate is evalu- given image
ated to determine the dust specs.

3. EXPERIMENTAL RESULTS

150 Our experiments are based on the assumption that the digital
16" . .. camera is not available and that the sensor dust pattern has to
14 > 145 be obtained from a number of images taken by a DSLR cam-

. ,era where obtaining a precise dust template is not easy. To
S i145 create an image set we have downloaded DSLR images from

10 1 ....... three different personal galleries at www. pbase, com. All
135 images are taken with Sigma SD10. We also created an alter-

native image data set taken from compact consumer cameras.

...... 3 In order to reduce computation time of cross-correlation, all
"......... . images are resized to 800x533 pixels. Since dust spots are4 -.. /.......... 125

.......... ....... almost invisible at large aperture rates, images with low f-
2 .......... 2 numbers (below than 8) are not used at experiments.

2 4 6 8 10 12 14 16 18 From each three gallery, we randomly select 10 images to
create a dust template. As described in Section 2, we com-
puted the cross-correlation outputs for each image and then

Fig. 7. Contour analysis of dust speck in fig. 4 (Num. of superimposed all the outputs to create a camera dust pattern.
closed loops inside of the speck : 16, intensity loss : 24.3) The contour analysis is then used to refine the final result. Af-

ter dust patterns of three cameras are computed, in the testing
and verification step previously unseen images in each image

2.3. Camera Dust Pattern Generation gallery are analyzed to determine if they include any traces of
dust patterns in the locations pointed in the dust template of

To be able to address a forensic setting we assumed two rele- the camera.
vant scenarios of dust pattern generation. In Figures 8,9,10 we provide results, when the dust tem-

plate is generated only from 10 images, and tested on 20 im-
a Digital camera is available: In this case the dust pattern ages taken by the same and 60 random images taken by other

of an image can be generated by taking the picture of cameras. Our matching results indicate that, we achieve a
distant smoothly varying scenery by manually setting detection rate around 92% with 0% false positive rate by set-
the focal length to high values (f032 or f/36). Then pro- ting the confidence threshold 1.2. In the figures x-axes shows



the image index and y-axes is the proposed metric indicating
confidence in the match. 8 C Camera 3
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0 10 20 30 40 50 60 70 80 Fig. 10. Num. of matches between the template of the camera
images 3 and dust candidates. (num. of dusts in the template: 38)

Fig. 8. Num. of matches between the template of the camera
1 and dust candidates. (num. of dusts in the template: 15) speck becomes a challenging task. Another important prob-

lem is the detection of dust specks in non-smooth, complex
regions without yielding many false-positives. In the future
work, we will address these issues.

8 Camera 
2
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Abstract. Techniques and methodologies for validating the authen- and other camera/picture information into the image of the
ticity of digital images and testing for the presence of doctoring and scene. The embedded data can be extracted later to verify
manipulation operations on them has recently attracted attention, the image integrity, establish the image origin, and verify
We review three categories of forensic features and discuss the
design of classifiers between doctored and original images. The per- the image authenticity (identify the camera and the photog-
formance of classifiers with respect to selected controlled manipu- rapher). However, its use requires that a watermark be em-
lations as well as to uncontrolled manipulations is analyzed. The bedded during the creation of the digital object. This limits
tools for image manipulation detection are treated under feature fu-
sion and decision fusion scenarios. 0 2006 SPIE and watermarking to applications where the digital object gen-
IS&T IDOl: 10.1117/1.2401138] eration mechanisms have built-in waterinarking capabili-

ties. Therefore, in the absence of widespread adoption of

1 Introduction digital watermarking technology (which is likely to con-
tinue for the foreseeable future), it is necessary to resort to

The sophisticated and low-cost tools of the digital age en- image forensic techniques. Image forensics can, in prin-
able the creation and manipulation of digital images with- cierontuethstofpcsigoeainsowih

out eavng ny ercptile race. A a onsqueceone ciple, reconstitute the set of processing operations to which
out leaving any perceptible traces. As a consequence, one

can no longer take the authenticity of images for granted, the image has been subjected. In turn, these techniques not

especially when it comes to legal photographic evidence, only enable us to make statements about the origin and

Image forensics, in this context, is concerned with recon- veracity of digital images, but also may give clues as to the

structing the history of past manipulations and identifying nature of the manipulations that have been performed.

the source and potential authenticity of a digital image. Several authors have recently addressed the image fo-

Manipulations on an image encompass processing opera- rensic issue. Popescu et al.3 showed how resampling (e.g.,
tions such as scaling, rotation, brightness adjustment, blur- scaling or rotating) introduces specific statistical correla-
ring, contrast enhancement, etc. or any cascade combina- tion, and described a method to automatically detect corre-
tions of them. Doctoring images also involves the pasting lations in any portion of the manipulated image. Avcibas et
one part of an image onto another one, skillfully manipu- al.4 developed a detection scheme for discriminating be-
lated so to avoid any suspicion. tween "doctored" images and genuine ones based on train-

One effective tool for providing image authenticity and ing a classifier with image quality features, called "gener-
source information is digital watermarking.1 An interesting alassifier with me ty are s, lled tgnr

2 g alized moments." Both methods are, however, limited to a
proposal is the work of Blythe and Fridrich for a secure subset of doctoring operations. Johnson and Farid5 de-
digital camera, which losslessly embeds the photographer's scribed a technique for estimating the direction of an illu-
iris image, the hash of the scene image, the date, the time, minating light source, based on the lighting differences that

occur when combining images. Popescu and Farid6 quanti-
Paper 06115SSR received Jun. 30, 2006; revised manuscript received Sep. fled the specific correlations introduced by color filter array
19, 2006; accepted for publication Sep. 21, 2006; published online Dec. (CFA) interpolation and described how these correlations,
28, 2006.
1017-990912006115(4)/041102/17/$22.00 © 2006 SPIE and IS&T. or lack thereof, can be automatically detected in any por-
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Fig. 1 Example of photomontage image: the head of the child in the center of the group is replaced,
after appropriate manipulation, with that of the child in the middle photograph.

tion of an image. Fridrich et al.7 investigated the problem 2 Forensic Features
of detecting the copy-move forgery and proposed a reliable Investigation of sophisticated manipulations in image fo-
method to counter this manipulation. rensics involves many subtleties because doctoring opera-

The problem addressed in this paper is to detect doctor- tions leave weak evidence. Furthermore, manipulations can
ing in digital images. Doctoring typically involves multiple be cleverly designed to eschew detection. Hence, an image
steps, which typically involve a sequence of elementary must be probed in various ways, even redundantly, for de-
image-processing operations, such as scaling, rotation, con- tection and classification of doctoring. Furthermore, dis-
trast shift, smoothing, etc. Hence, to tackle the detection of criminating features can be easily overwhelmed by the
doctoring effects, we first develop single tools (experts) to variation in image content. In other words, the statistical
detect these elementary processing operations. Then we differences due to image content variation can confound
show how these individual "weak" detectors can be put statistical fluctuations due to image manipulation. It is,
together to determine the presence of doctoring in an expert thus, very desirable to obtain features that remain indepen-
fusion scheme. Novel aspects of our work in this paper are dent of the image content, so that they would reflect only
the following. First, we introduce and evaluate features the presence, if any, of image manipulations. The three cat-
based on the correlation between the bit planes as well the egories of forensic features we considered are as follows:
binary texture characteristics within the bit planes. These
are called binary similarity measures (BSMs) as in Ref. 8. 1. IQMs. These focus on the difference between a doc-
We compare their performance against two other categories tored image and its original version. The original not
of tools that were previously employed for image forensics being available, it is emulated via the blurred version
and steganalysis, namely, IQMs (image qualitly of the test image. The blurring operation purportedly
measures).'10 and HOWS (higher order wavelet statistics). removes additive high-frequency disturbance due to
Second, we unify these three categories of features, IQMs, certain types of image manipulations to create a ver-
BSMs, and HOWSs, in a feature scenario. The cooperation sion of the untampered image. The 22 IQMs consid-
between these feature categories is attained via a feature ered in Refs. 9 and 10 range from block SNR to
selection scheme formed from the general pool. It is shown spectral phase and from spectral content to Spearman
that the feature fusion outperforms classifier performance rank correlation.
under individual category sets. Third, we conduct both con- 2. HOWS. These are extracted from the multiscale de-
trolled and uncontrolled experiments. The controlled ex- composition of the image." The image is first decom-
periments are carried on a set of test images using image- posed by separable quadrature mirror filters and the
processing tools to give us insight into the feature selection mean, variance, skewness, and kurtosis of the sub-
and classifier design. An example of controlled experiment band coefficients at each orientation and scale are
is the blurring of the whole image and its detection with a computed. The number of HOWS features is 72.
classifier that may be clairvoyant or blind. The uncontrolled 3. BSMs. These measures capture the correlation and
experiments relate to photomontage images, where we can- texture properties between and within the low-
not know specifically the manipulation tools used and significance bit planes, which are more likely to be
where only parts of the image are modified with a cascade affected by manipulations.,12,13 The number of BSM
of tools. features is 108.

An example of the photomontage effect is illustrated in 4. Joint Feature Set (JFS). We have considered the
Fig. 1, where the head of the central child in Fig. 1(a) is pooled set consisting of the three categories of fea-
replaced with the head borrowed from the image in 1(b), tures, namely the union of the IQM, BSM, and
after an appropriate set of manipulations such as cropping, HOWS sets. This provides a large pool of features to
scaling, rotation, brightness adjustment, and smoothing choose from, that is, 108 BSMs, 72 HOWS, and 8
along boundaries. The resulting image is given in Fig. I(c). IQM features; overall, 188 features.

The organization of this paper is as follows: Section 2 5. Core Feature Set (CFS). We decided to create a core
reviews the forensic image features utilized in developing set, fixed in terms of the number and types of fea-
our classifiers or "forensic experts." Section 3 presents a tures, to meet the challenge of any potential manipu-
detailed account of controlled and uncontrolled experi- lation. The motivation for this smaller core set of
ments. Conclusions are drawn in Sec. 4. unique features was to avoid the laborious process of
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feature selection for every new scenario. In other 2. Semiblind classifier. This is the classifier for a spe-
words, we envision a reduced set of features standing cific manipulation at unknown strength. For example,
ready to be trained and used as the challenge of a new we want to determine whether an image has been
manipulation scenario arises. Obviously the perfor- blurred after its original capture, whatever the blur
mance of the CFS, which can only for classifier size.
weights, would be inferior to the performance of the 3. Blind classifier. This is the most realistic classifier if
JFS, which can both chose features and train classi- one wants to verify whether or not an image has been
fier weights. The common core of features was ex- tampered with. For example, given an image down-
tracted as follows. We select the first feature from the loaded from the Internet, one may suspect that it
set of 188 available features, as the one that results in might have been manipulated, but obviously one can-
the smallest average error of the semiblind classifiers not know the type(s) of manipulations.
(defined later); the second one is selected out of re-
maining 188-1 features, which, as a twosome fea- To motivate the search for forensic evidence, we illus-
ture, results in the smallest average classification er- trate the last three bit planes of the "Lena" image, when the
ror, and so forth. latter was subjected to blurring, scaling, rotation, sharpen-

ing, and brightness adjustment, as shown in Figs. 2 and 3.
The feature selection process was implemented with the As shown in these examples, image manipulations alter to

sequential forward floating search, (SFFS) method.14 The varying degrees the local patterns in bit planes (Fig. 2) as
SFFS method analyzes the features in ensembles and can well as across bit planes (Fig. 3). Consequently, the statis-
eliminate redundant ones. Pudil et al.14 claims that the best tical features extracted from the image bit planes can be
feature set is constructed by adding to and/or removing instrumental in revealing the presence of image manipula-
from the current set of features until no more performance tions. Since each bit plane is also a binary image, it is
improvement is possible. The SFFS procedure can be de- natural to consider BSMs as forensic clues. BSMs were
scribed as follows: previously employed in the context of image

steganalysis.1'0 , 2 Similarly, these disturbance patterns will
1. Choose from the set of K features the best two fea- affect the wavelet decomposition of the image and the pre-

tures; i.e., the pair yielding the best classification re- dictability across bands, which can be captured by HOWS.
sult. Finally, a denoising operation on the image will remove the

2. Add the most significant feature from those remain- content but will bring forth patterns similar to those shown
ing, where the selection is made on the basis of the in Figs. 2 and 3. Features trained to distinguish these pat-
feature that contributes most to the classification re- terns take place in the repertoire of IQMs.
suit when all are considered together. Figure 4 illustrates the behavior of three selected fea-

3. Determine the least significant feature from the se- tures, each from one category, vis-A-vis the strength of ma-
lected set by conditionally removing features one by nipulation. The continuous dependence of sample mea-
one, while checking to see if the removal of any one sures, the Sneath and Sokal measure of BSMs; the
improves or reduces the classification result. If it im- normalized correlation measure of IQMs; and variance of
proves, remove this feature and go to step 3, other- vertical subband of HOWS (all to be defined in the follow-
wise do not remove this feature and go to step 2. ing subsections) on the strength parameter for three types

4. Stop when the number of selected features equals the of manipulation is revealing.
number of features required.

The SFFS was run for each type of image manipulation, for 2.1 BSMs

the category of manipulations, for the pooled categories. BMSs for images and their steganographic role were dis-
The litmus test for feature selection was the performance of cussed in Refs. 4, 12, and 17 and Appendix A details con-
the regression classifier.15 To preclude overtraining the clas- cerning them. We conjecture that they can play an effective
sifier, we upper bounded the number of features selected by role in the evaluation of doctored images. Consider for ex-
20. This means that, e.g., at most 20 BSM features could be ample, the Ojala histogram as one of the BSM features.
selected from the 108 features in this category. On the other Figure 5(a) shows in the left column the 256-level gray-
hand, for the joint set and for the core set, the upper bound level histograms of the "Lena" image side by side with the
of feature population was set to 30. Often, however, the 512-level Ojala histograms in the right column. The first
selection procedure terminated before the upper bound was row contains the respective histograms of the original im-
reached, ages, while the following rows show the respective histo-

We used the following definitions of classifiers: grams in the manipulated images. Notice that while the
gray-level histograms remain unperturbed, the Ojala histo-

1. Clairvoyant classifier. This is the classifier trained for grams are quite responsive to the type of manipulation. For
a specific manipulation at a known strength. For ex- example, sharpening flattens the histogram, while rotation
ample, we want to distinguish pristine images from and blurring causes the probability of certain patterns to
the blurred ones, where the size of the blurring func- peak. The sensitivity of the Ojala histograms to manipula-
tion aperture was n pixels. Obviously, this case, tions can be quantified in terms of distance functions. In
where one is expected to know both the manipulation this paper, bit plane pairs 3-4, 4-5, 5-6, 6-7, and 7-8 for the
type and its parameters is somewhat unrealistic in red channel and bit plane pair 5-5 of the red and blue chan-
practice, but it is otherwise useful for understanding nels were used; in other words, the BSM features from
the detector behavior, these plane pairs were offered to the feature selector.
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(a) Original (b) Scaling up and down 25%

(c) Rotation +-45 (d) Gaussian blurring, 0.5 pixel radius

(e) Increase brightness +20 (f) Sharpening

Fig. 3 Differences between the fifth and the sixth bit planes of the "Lena" image and its manipulated
versions. The range [-1, 1] of bit plane differences is mapped to 0 to 255.
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Fig. 4 (a) Sneath and Sokal measure of binary similarity versus the strength of manipulations; (b)
normalized correlation measure of the IQM versus the strength of manipulations of the blurring,
scaling-up, and rotation manipulations; and (c) variance of vertical subband HOWS measures versus
the strength of manipulations of the blurring, scaling-up, and rotation manipulations. The Photoshop
manipulation parameters are as follows: blurring, 0.1, 0.3, 0.5, and 1.0; scaling-up, 5, 10, 25, and 50%;
and rotation, 5, 15, 30, and 45 deg.

The formulas for these BSMs are given in Table 1 and features, respectively, we present in columns 3 to 9 the
also reported in Ref. 12. Columns 3 to 1 I indicate with a semi-blind cases that is, when the detector knows the spe-
checkmark whether or not that feature was chosen by the cific manipulation, but not its strength. For example, the
SFFS algorithm. To give an example, the features most classifier is trained to differentiate between original and
contributing to the "sharpen" manipulation are the Kulc- blurred images, while being presented with images sub-
zynski similarity measure 1, the Sneath and Sokal similar- jected to a range of blurring degrees. The last two columns
ity measures 1, 2, 3, and 5, Ochiai similarity measure, bi- (10 and 11) of the tables require special attention. Column
nary min histogram difference, binary absolute histogram 10 (JFS) is the blind manipulation case, that is, the classi-
difference, binary mutual entropy, binary Kullback-Leibler fier does not know the type and strength of the manipula-
distance, Ojala mutual entropy and Ojala Kullback-Leibler tion, if there is any, and is trained with all sorts of image
distance. manipulations. Finally, column 11 (CFS) shows the features

In Table 1, as well as Tables 2 and 3 of IQM and HOWS selected by the core set. Notice that the format of Table 3
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Fig. 5 Histograms of the original "Lena" image obtained in the face of image manipulations: (a)
gray-level histograms and (b) Ojala histograms (normalized) from the bit planes 3 and 4.

HOWS) is different than those of Tables 1 and 2 since we onal subbands at scale i= 1, ... n. A linear predictor for the
are not using the SFFS procedure for the HOWS method in magnitude of these coefficients can be built using the intra-
single semiblind sets; SFFS is used only in the CFS. and intersubband coefficients. For example, for the vertical

i'th subband with wk denoting the scalar weighting coeffi-
2.2 JQMs cients one has the residual term ej(x,y):

IQMs were employed in Ref. 9 in the context of both pas-
sive and active warden image steganography schemes. leoj(x,y)l =w1IVI(x- 1,y)LI +w21V(x+ I,y)I
These measures address various quality aspects of the dif- + w3 VI(x,y - 1)1 + w41V(x,y + 1)1
ference image between the original and its denoised ver-
sion. Among the 22 candidate measures investigated, the + w51Vi+÷(x/2,y/2)I + w6Di(x,y)l
survivors of the SFFS selection procedure are listed in + w7 DiD+I(x/2, y/2)1.
Table 2. To give a flavor of these features, the cross-
correlation measure, appearing in the second row of this The prediction coefficients and hence the prediction error
table, was illustrated Fig. 4(b). Notice the almost linear terms can be estimated using the Moore-Penrose inverse.
dependence of the cross-correlation measure versus the An additional statistical set of 4 X 3 X (n-1) features can
strength of the image manipulation operation. Different be collected from the mean, vaeiance, skewness, and kur-
than the BSM case, where only one spectral component tosis of the prediction residuals at all scales. The final fea-
was used, the IQMs are calculated using all three color ture vector is 24(n- 1) dimensional, e.g., 72 for n=4 scales
components. Notice, for example that, the SNR feature suf- (here n= 1 represents the original image). When the HOWS
fices all by itself to discriminate the "sharpen" manipula- features where subjected to the SFFS selection procedure in
tion from among the IQMs. the blind manipulation scenario, the following 16 features

were selected. Recall that the CFS and the JFS were se-
2.3 HOWS lected from the pool of all 188 features. The 16 shown in
The HOWS features 3' 5' 6 are obtained via a decomposition the Table 3 represent the portions of HOWS features in the

of the image using separable quadrature mirror filters. This core set.
decomposition splits the frequency domain into multiple
scales and orientations, in other words, by generating ver- 3 Experimental Results and Detection
tical, horizontal, and diagonal subband components. Given Performance
the image decomposition, a first set of statistical features is In our experiments we built a database of 200 natural im-
obtained by the mean, variance, skewness, and kurtosis of ages. These images were expressly taken with a single cam-
the coefficients of the n subbands. These four moments, era (Canon Powershot S200). The reason is that each cam-
computed over the three orientations and n subbands make era brand possesses a different CFA, which may impact on
up 4 X 3 X (n-1) features. A second set of statistics is based the very features with which we want to detect
on the norms of the optimal linear predictor residuals. For alterations.17 The database constructed with a single camera
purposes of illustration, consider first a vertical band eliminates this CFA confounding factor.
Vi(x,y) at scale I and use the notation Vi(x,y), Hi(x,y), and The image alterations we experimented with were scal-
Di(x,y), respectively, for the vertical, horizontal and diag- ing up, scaling down, rotation, brightness adjustment, con-
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Table 1 Selection of BSM features per manipulation (semiblind detector) as well as when all manipulations are presented (blind detector); for
simplicity, we do not indicate the bit plan pairs used for each feature.

Similarity
Measure Description Up Down Rotation Contrast Bright Blurring Sharpen JFS CFS

Sneath and Sokal 2(a+ d) • '

similarity ml -2(a+ d) + b+ c
measure 1 {dm•'=m J-n91 ;k=3 .... 7,1=4....8;Ik-j1=1}

and similarly for m, and to m9

Sneath and Sokal a
similarity m2 = a±2(b+ c)
measure 2

Kulczynski a
similarity m3 = b+ c
measure 1

Sneath and Sokal a+d
similarity m4=b+c
measure 3

Sneath and Sokal a a d d
similarity (a-+b) (a+c) (b+d) (c+d)measure 4 m-

Sneath and Sokal ad
similarity M6 - [(a+ b)(a+ c)(b+ d)(c+ c)]112
measure 5

Ochiai similarity r a ýý a \11/2
measure m ,=L a+c )Jc

Binary Lance and b+c
Williams nonmetric m8='2a+b+c
dissimilarity measure

Pattern difference bc v ý1
m9 = (a+b+c+d)2

Variance dissimilaritym= n• min(p,,pM1)
measure

Binary min histogram dm 1 1=yp l-pl V
difference

Binary absolute histogram dm12 =-- n Plogn N) # ,
difference

Binary mutual entropy 1m1 , -' ,] lo
4 1pn log p2

hn

Binary Kullback-Leibler dm14 =IN, min(S,, S2n)
distance

Ojala min histogram dM15 =yN JlSnS

difference
Ojala absolute histogram dM1 6=-yN 1 1109

dm 6=- =Snlo

difference

Ojala mutual entropy dmI=-N lS I I
d 1= r- Snog0 S•2n

Ojala Kullback-LeiblerSN, s7

distance dm 8= -- l, S' log
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Table 2 Selected IM features; here Ck and (5k denote, respectively, the original and blurred versions of the k'th spectral component,
k=l .... K of some image; other symbols are defined in Appendix B.

Similarity
Measure Description Up Down Rotation Contrast Bright Blurring Sharpen JFS CFS

Mean square error D1 11( ]1/2 '(MSE) D1 =•= 'N• jCk(i1J)-6k(i,jj]" ' 4 •

Cross-correlationD2IKNlokijCij 4

measure K K Z.k oCk(ki,J)2
D2 RE= ý- (C(i,j)2Ci

L a p la c ia n M S E D 3 = • K = 1 E t ~ 2 K 1[ -1 ; j,/i) - '~ ~ j j j

Mean angle similarity D4 1 - N [2 1cos i , ,- , v •

Mean angle-magnitude 1
similarity D5= E i•=xij

(HVS) L2 Norm [ 1K x"N• LACk(i'jl]- U[Lk(i'j)] ,

D 6 = R l'k=1 7_ I 1L 4C k( Q flj~

Spectral phase error D7= 1N-- )N01 M(U, V)_ M(U, V)1
2  

V i

Spectral phase- __1 u v)
magnitude error D8= U. v)- ý(u, V)2

trast enhancement, blurring, and sharpening, all imple- 3.1 Assessment of Feature Sets
mented via Adobe Photoshop.18 For example, in the We ran experiments to assess the power of feature sets in
scaling-up manipulation, images were enlarged by six fac- all modes, namely, clairvoyant, semiblind, and blind.
tors, namely, by 1, 2, 5, 10, 25, and 50%, resulting in 1200
scaled-up images. In all cases, half of the images were ran-
domly selected for training, and the remaining half was 3.1.1 Clairvoyant mode

used for testing. Thus, the total image database with ma- In this case, the detector is aware of the specific manipula-
nipulations climbed up to 6200. Table 4 lists the manipula- tion as well as of its strength. Figure 6 illustrates the rela-
tions and their strength parameters. tive competition between each method (clairvoyant mode)

Table 3 Selected HOWS features in the core set.

Vertical Subband Horizontal Subband Diagonal Subband

Scale 1 2 3 1 2 3 1 2 3

Mean I I

Variance I

Kurtosis

Skewness

Mean of linear prediction error

Variance of linear prediction error I

Kurtosis of linear prediction error

Skewness of linear
prediction error
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Table 4 Selected Photoshop image manipulations and their parameters.

Scaling up (%) 1 2 5 10 25 50

Scaling down (%) 1 5 10 25 50

Rotation (deg) 1 5 15 30 45

Contrast enhancement 1 5 10 25

Brightness adjustment 5 15 25 40

Blurring (with radius) 0.1 0.3 0.5 1.0 2.0

Sharpen Photoshop Default

against different manipulation types, and the JFS that out- the competition between feature categories, where a sepa-
performs all. One can see from this figure that, while the rate detector was trained for each manipulation type, but
performance of methods may vary much from manipulation with unknown strength. Here we limit ourselves to two
to manipulation, the JFS is always the best performing one. illustrative cases, one where HOWS outperform the others
More explicitly, the SFFS was run separately for the IQM, (manipulation by rotation) and another where BSM outper-
BSM, HOWS, and JFS sets, and each feature set was opti- forms all others (manipulation by contrast enhancement).
mized for the specific manipulations. Figure 7 illustrates
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Fig. 6 Comparative performance of feature sets optimized for vari-
ous manipulations. For comparison purposes, one midlevel manipu- Fig. 7 Performance of clairvoyant classifiers for (a) rotation manipu-
lation strength was chosen, as denoted next to each manipulation. lation and (b) contrast enhancement manipulation.
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1.00 discover the proportions of feature categories taking role in
the classifications. The percentages of features derived

0.90o from respective BSM, IQM, and HOWS categories are il-
08 lustrated in Fig. 9. The enrollment percentages of catego-

ries vary widely from case to case, though in general the
0.O70  BSM and HOWS features dominate

tJ• 0.60 . 3.1.3 Blind mode

0.50 . Finally we designed blind classifiers, that is, classifiers that
are independent of the manipulation type and of its

0.40 strengths. This classifier was designed using training and
test sets incorporating images that were manipulated with

0.30 all items in Table 4. The corresponding performance results
,, ,64 9-1,11q of this blind classifier are given in Figs. 10 and 11. The

A Cp following comments are in order:

1. The classifier designed from pooled features outper-

I BSM 0 IQM U HOWS E JFS forms the classifiers that were designed with features
from a single category, be it BSM, IQM, or HOWS

(a) (Fig. 10). As expected, the JFS, which optimizes its

1.00 feature set and classifier weight for the occasion, is
better than the CFS, which can only optimize its clas-

0.90 sifier weights for a fixed set of features.
0 2. The left bars (JFS) in Fig. 11 denote the performance

of semiblind classifiers (specific for a manipulation).
0.70 ,Note here that there is not much of a performancedtn eL* difference between the JFS trained to detect all ma-

S0.60 nipulations, as in Fig. 10, and the JFSs trained to
detect just one specific manipulation. Obviously these

0.50 bars are the same as the rightmost bars in Fig. 8.
3. The right bars (CFS), on the other hand, correspond

to the classifier performance when the core subset of

0.30 features were used, but trained separately for each
type of manipulation. In this case, only the weights

lop ,,". ,. , ' "\,,.o,0 differ in the regression equations, but the type and
Sc-o \ .q, . number of features are the same. The results with the

CFS are slightly inferior to the JFS set, as expected.
tBM iQM liHows JFS The bar in Fig. 11 denotes the average of the CFS

. ... . .performance.

(b) 4. Figure 12 shows pie charts of features derived from
the three categories. The left figure shows the por-

Fig. 8 Performance of semi-blind classifiers, which are independent tions of the three categories in the JFS case and the
of the strength of manipulation. right in the CFS case. Notice that the BSM features

dominate in the CFS, while in the JFS case the
HOWS features dominate.

Notice that the fourth bar has the richest feature selection
from BSM+IQM+HOWS, hence it is always better. Finally, it would have been desirable to establish patterns or

trends in the selection of features against specific manipu-
3.1.2 Semiblind mode lations for a better intuitive understanding of the problem.

In this case, the detector is aware of the specific manipula- However, no clear trend was observable.

tion, but not of its strength, which could vary as in Table 4.
For example, we generate a separate image pool from the 3.2 Performance with Uncontrolled Experiments
settings of 25, 10, 5, and 2% scaling-up parameter, and To test our scheme in a more realistic environment, we
train the corresponding "scaling-up forensic detector." The considered images doctored by extra content insertion and
SFFS outcomes for the BSM and IQM sets were already replacement of the original content, e.g., as in Fig. 1. This
exemplified in Tables 1-3, respectively. One can notice in is in contrast to the experiments in Sec. 3.1, where the
Fig. 8 that each feature category has its own strengths and whole image was subjected to one manipulation type at a
weaknesses vis-h-vis the manipulations and that it is not time. Instead, in uncontrolled experiments, sequences of
possible to determine a single winner category for all cases. image manipulation take place in image patches, with pos-
However, when we allow the selection algorithm to pick up sible forgery intention.
features from the pooled IQM, BSM, and HOWS sets, the In the first round of experiments, we used a set of 20
detection performances are always better. It is intriguing to images, all captured with the same camera to preclude the
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Fig. 9 Enrollment percentages from the three feature categories.

nuisance of different camera parameters. We spent some is, manipulation-specific, classifiers, since any one or more
effort to make them look like natural images to avoid any of the manipulation types could have taken place. We de-
suspicion. To this effect, the inserted content was resized, clared "a manipulation has occurred" in a block whenever
rotated and/or brightness adjusted before being pasted onto any one of the semiblind detectors gave an alarm. In other
the image, the parameters of these manipulations being ad- words, the binary decision was taken with decision fusion
justed with visual fitness criteria. Sample images that have from the six manipulation experts using the binary sum
undergone doctoring operations are shown in Fig. 13. We rule. False positives occur if an untampered block is erro-
took two untampered and one tampered block from every neously declared as "manipulated"; similarly, false nega-
image, to create a repertoire of 40 untampered and 20 tam- tives result when all six experts fail to see evidence of
pered blocks. The block sizes were varying but the smallest t i pultio n a ll six was f a ll manipulated .
block size was 100 X 100, while the original image sizes manipulation for a block that was actually manipulated.
were 640 X 480. The manipulated regions of the image, like Table 5 shows the results for the image blocks on generic

the heads in Figs. 1 and 13(a) and the people in Fig. 13(b), classifiers. The performance of blind classifiers are listed in
fitted into the block size. Notice that one does not exhaus- Table 6.
tively search with blocks positioned over all possible pix- As a further proof of the viability of our scheme, we
els. Instead, one is tempted to test the suspected regions, captured 100 images from the Internet with obvious tam-
like persons, faces, etc. pering clues. Sample images are displayed in Fig. 14. We

We tested these images using all the six semiblind, that tested these images on semi-blind and blind classifiers (see
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Fig. 10 Performance of blind classifiers. Each bar denotes a differ- m JFS OEiCS
ent way of selecting features. The first three bars denote the feature (b)
set when we limit the choice to the respective BSM, IM, and (b)
HOWS categories. Both the JFS and the CFS select from all cat-
egories but in two different styles, as explained in Sec. 3. Fig. 11 Performance of semiblind and blind classifiers. The left bars

denote the strength-blind manipulation-clairvoyant classifier, where
both features and regression coefficients could be trained; finally,

Tables 7 and 8). Notice that for the images downloaded the right bars denote the strength-blind, manipulation-clairvoyant
classifier, where the core of features were common and fixed but

from the Internet, the tests are on the whole image, and not regression coefficients could be trained.
on a block basis.

4 Conclusions weighted plurality voting;' 9 (2) investigation of a more

We developed an image forensic scheme based on the in- general set of manipulation tools that are instrumental in
terplay between feature fusion and decision fusion. We con- image doctoring; and (3) singular value decomposition and
sidered three categories of features, namely, the binary nonnegative matrix factorization are powerful tools for ma-
similarity measures between the bit planes, the image qual- trix analysis, and its potential directly reflects on images,
ity metrics applied to denoised image residuals, and the when image blocks are viewed as nonnegative matrices.
statistical features obtained from the wavelet decomposi- One intriguing question is whether and how to create
tion of an image. These forensic features were tested images and image manipulations that will go through un-
against the background of single manipulations and mul- detected by our scheme, especially if all the measures of
tiple manipulations, as would actually occur in doctoring
images. In the first set of single-manipulation experiments,
we observed that each feature category has its weak and EM

strong points vis-ht-vis manipulation types, and that it is HOW

best to select features from the general pool of all catego-
ries (feature fusion). In the second set of experiments with s• '0%
multiple manipulations, the best strategy was to use differ- % ,oM
ent types of classifiers (experts) one per manipulation, and 4

then fuse their decisions. (a) (b)
Further issues that remain to be explored are as follows:

(1) The implementation of the decision fusion with alterna- Fig. 12 Pie charts of feature sets for the JFS (left) and CFS (right)
tive schemes, such as max rule, sum rule, ranked voting, or in blind mode.
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(b,)

Fig. 13 Examples of doctored images: (a) Changing the content of
the image (left genuine, right forged) and (b) adding extra content to
an image (left genuine, right forged).

the method are publicly available. Figures 7-10 give some Fig. 14 Examples of the images captured from the Internet. The top
clues as to the probability of avoiding being caught. Some left of the image is the original one. All other images are doctored.

manipulations are more easily detected; for example, Fig.
7(a) shows that the rotation expert is able detect even 1 deg
of rotation with 88% success in clairvoyant mode; on the
other hand, the success rate for contrast enhancement ex-
perts is inferior. As can be expected from any doctoring 1 ifxr=0 andx 3 =0
detector, our approach also has a weak belly to very small 2 if Xr = 0 and x =1

levels of manipulations. On the other hand, only objective X",3, =

psychovisual measures can decide at what point the doctor- if xr = 1 and xs = 0
ing effects impact on the semantic content. 4 if xr = 1 and x, = 1.

Thus, the agreement variable for the pixel xi is obtained as
5iAppendix A: BSM Features i=yk= l5(Xi,ik,J), j=l ... ,4, K=4, where 8 is the Dirac

Let xi={xi-k4 ,k=l, .... K} and yi={Yi_-k,k=l..K} be delta selector. Finally, the accumulated agreements can be
the sequences of bits representing the K-neighborhood pix- defined as

els, where the index i runs over all the M X N image pixels.
For K=4, we obtain the four stencil neighbors over which 1 1
we define the indicator function as a= - I, b = I

MN MNi

Table 5 Performance of semiblind classifiers for image blocks.

Table 6 The performance of blind classifiers for image blocks.
Method False Positive False Negative Accuracy (%)

BSM 20/40 2/20 63.33 Method False Positive False Negative Accuracy (%)

IQM 25/40 2/20 55.00 BSM 19/40 6/20 58.33

BSM+IQM 9/40 2/20 81.67 I0M 23/40 4/20 55.00

HOWS 40/40 0/20 33.33 BSM+IQM 8/40 4/20 80.00

CFS 6/40 3/20 85.00 HOWS 9/40 8/20 71.67

JFS 5/40 0/20 91.67 JFS 1/40 5/20 90.00
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Table 7 The performance of semiblind classifiers for image blocks 1 2 4 0 1 0
that are captured from the Internet.

128 X1-(256) 8 1 0 0

Method False Negative Accuracy (%)

BSM 21/100 79 64 32 16 0 1 1

IM 19/100 81 (a) (b)

BSM+IQM 9/100 91 Fig. 15 (a) Weighting of the neighbors in the computation of Ojala
score and (b) example of Ojala score for the given bit pattern where

HOWS 0/100 100 the central bit is 0: S=2+16+32+128=178.

JFS 0/100 100

plane pairs vary from manipulation to manipulation; for
example, blurring demands din2 between bit planes 7-8 and

Ni ad -N 4  3-4, that is, {dm• 2dm7'8}.
N =dMN . A second group of features consists of histogram andentropic features. Based on normalized four-bin histo-

These four variables {a,b,c,d} can be interpreted as the grams, we define the minimum histogram difference dmu
one-step cooccurrence values of the binary images. Obvi- and the absolute histogram difference measures dm12, bi-

ously these cooccurrences are defined for a specific bit nary mutual entropy dm13, and binary Kullback-Leibler dis-
plane b, though the bit plane parameter was not shown for tance dml 4, as also given in Table 1. There are therefore

the sake simplicity. Normalizing the histograms of the overall 24 such features defined over the six bit plane pairs.

agreement scores for the bth bit plane [where now ai The third set of measures, dmni 4, ... ,dM] 7 are somewhat

al a (b)] one obtains for the j'th cooccurrence: different in that we use the neighborhood-weighting mask
proposed by Ojala. For each binary image we obtain a 512-
bin histogram using directional weighting of the eight

S°1i neighbors. We have in total 24 features, with four varieties

P- = =3 ... , 8. computed over six bit planes. To give a flavor of, binary
similarity measures we consider the Ojala18 histograms. For

i j each binary image on the bth bit plane we obtain a 512-bin
histogram based on the weighted eight neighborhood, as inThree categories of similarity measures are derived from Fig. 15, For each eight-neighborhood pattern, the histogram

the local bit plane features, as detailed next. bin numbered is augmented by 1.

The first group of features uses various functional com- Finally, the entropic measures are defined as follows.

binations of local binary texture measures. Actually, as Letathe two normalied stras be dened as folon

pointed out in the first row of the Table 1, the differential Let the two normalized histograms be denoted as Sis n

measure dm=m-m over adjacent bit plane pairs, the kth and=3...7. The resulting Ojaa measure is
meaned te th othe mutual entropy between the two distributions belonging
and the/th, is used. The feature selection algorithm selects to adjacent planes b and b+ 1:
none, one, or more of the appropriate bit plane pairs
{din' t=mi-nil; k=3,..., 7, 1=4,..., 8; Ik-l1= 1, N
i= I ,... 10} that are found to be the most effective in clas- mP= - Sn log S6 1.
sification. In Table 1, therefore, we do not indicate the spe- ,=1
cific bit planes used, since these are to be chosen adaptively
by the feature selection algorithm. Thus, this first group
results in 60 features, since there are 10 varieties, each 6 Appendix B: 10M Features
computed over six adjacent bit plane pairs. The chosen bit In this appendix we define and describe image quality mea-

sures considered. In these definitions the pixel lattices of
images A and B are referred to as A(i,j) and B(i,j), i,j

Table 8 The performance of blind classifiers for image blocks that = 1 ... ,N, as the lattices are assumed to have dimensions

are captured from the Internet.
N X N. The pixels can take values from the set {0..255}.
Similarly, we denote the multispectral components of an

Method False Negative Accuracy (%) image at the pixel position i,j, and in band k, as Ck(i,j),

BSM 58/100 42 where k= 1,...,K. The boldface symbols C(i,j) and C(i,j)
indicate the multispectral pixel vectors at position (i,j). For

lOM 51/100 49 example, for the color images in the RGB representation

BSM+IQM 48/100 52 one has C(i,j)=[R(i,j)G(i,j)B(ij)]T. All these definitions
are summarized in Table 9.

HOWS 47/100 53 Thus, for example, the power in the k'th band can be

calculated as ok.= joCk(i,j)2 . All these quantities with anJFS 11/100 89 -

additional hat, i.e., Ck(i,j), C etc., correspond to the dis-
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Table 9 Summary of definitions for IQM features. N-1

K • Ck(i,j)Ck(i,j)
Symbol Definition D2 =-- NI

Ck(i,j) (ij) th pixel of the k th band of image Kk Ck(i,j)2
C ij=o

C(i,) (i,Q) th multispectral (with K bands)
pixel vector

6.2.2 Mean angle similarity
C multispectral image A variant of correlation-based measures can be obtained by

Ck k th band of multispectral image C considering the statistics of the angles between the pixel
vectors of the original and distorted images. Similar "col-

k= Ck- (k error over all the pixels in the k th ors" will result in vectors pointing in the same direction,
band of multispectral image C while significantly different colors will point in different

directions in the C space. Since we deal with positive vec-

tors C and 6, we are constrained to one quadrant of the
Cartesian space. Thus, the normalization factor of 2/ir is

torted versions of the same original image. As a case in related to the fact that the maximum difference attained will
point, the expression IIC(i,j)-d(i,j)II2=24=i[ck(i,j) be ir/2. The combined angular correlation and magnitude

-Ck(ij)]2 denotes the sum of errors in the spectral compo- difference between two vectors can be defined as follows:20

nents at a given pixel position ij. Similarly, the error ex-
pression in the last row of Table 9 expands as sk 1ij) I 2Cos-
=ijL[CkJ)- ,J)] In the specific case of RGB 7r J

color images, we occasionally revert to the notations r ]

{R,G,B} and {R,G,j}. X 1-
Quality metrics can be categorized into six groups ac-

cording to the type of information they use. The catego- We can use the moments of the spectral (chromatic) vec-ries used are tor differences as distortion measures. To this effect we

1. pixel-difference-based measures such as mean square have used the mean of the angle difference (D4) and the

distortion mean of the combined angle-magnitude difference (D5) as
2. correlation-based measures, that is, correlation of in the following two measures:

pixels, or of the vector angular directions N
3. edge-based measures, that is, displacement of edge 1 2 c1s-2 (C(ij),C(ij))

positions or their consistency across resolution levels D 4 = = W E -N2o ((ij), 6(i,j))
4. spectral distance-based measures, that is, Fourier 7T IC(ij)IIII6Qj)II

magnitude and/or phase spectral discrepancy on a
block basis N

5. context-based measures, that is penalties based on D5=-2 Xij.
various functionals of the multidimensional context N ij=I
probability

6. HVS-based measures, measures either based on the
HVS-weighted spectral distortion measures or (dis- 6.3 Edge-Based Measures
)similarity criteria used in image base browsing The edges form the most informative part in images. Some
functions. examples of edge degradations are discontinuities in the

edge, decrease of edge sharpness by smoothing effects, off-
set of edge position, missing edge points, falsely detected

6.1 Pixel-Difference-Based Measures edge points, etc.
6.1.1 Mean square error

I [K 1 N • 1/2 6.3.1 Laplacian mean square error.21

D= ICk(i,j) - Ck(i,)I- N-
K k {O[Cj(i,j)]- O[Ck(ij)]}2

where K=3 for RGB color images. =1 Ei=

6.2 Correlation Based Measures N- {O[Cki,)]}

6.2.1 Normalized cross-correlation measure ij=0

The closeness between two digital images can be quantified where O[Ck(i,j)]=Ck(i+ 1 ,j)+Ck(i- 1 ,j)+Ck(i,j+ 1)
in terms of the normalized cross-correlation function: +Ck(i,j- I)- 4 Ck(ij).
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ABSTRACT (1) the shot noise which is assumed to be a random compo-
nent, and (2) the pattern noise which is assumed to be a deter-

In [1], a novel method for identifying the source camera of a ministic component. Furthermore, the pattern noise consists

digital image. The method is based on verifying the presence of two main components which are the fixed pattern noise

of digital cameras sensor's pattern noise in a digital image (FPN) and the photo-response non-uniformity noise (PRNU).

through a correlative procedure. In this paper, we investigate

the performance of this method in a more realistic setting and One component of the fixed pattern noise (FPN) is due to

provide results concerning its detection performance. To im- dark currents which refers to pixel-to-pixel differences when

prove the applicability of the method as a forensic tool, we the sensor array is not exposed to light. Dark current noise

propose an enhancement over it by also verifying that class can be easily compensated within a camera by taking dark

properties of the image in question are in agreement with frame and subtracting it from a sensor output. On the other

those of the camera. For this purpose, we identify and com- hand, the other part of the pattern noise, photo-response non-

pare characteristics due to demosaicing operation. Our results uniformity noise (PRNU), is primarily caused by sensitivity

show that the enhanced method offers a significant improve- of pixels to light and it is primarily caused by the imper-

ment in the performance. fections in the sensor manufacturing process. However, un-
like dark currents PRNU cannot be easily corrected. There-

Index Terms- Digital Forensics, source camera identifi- fore, uniqueness of the photo-response non-uniformity noise
cation, pattern Noise, demosaicing artifacts makes it a compelling means for characterizing digital cam-

eras.

1. INTRODUCTION In [1], authors proposed a method to extract the pixel
non-uniformity noise associated with a CCD sensor. The key

Digital imagery is becoming an integral part of our daily lives idea of the method is to denoise the image by a wavelet-
at a rapid pace. As a result of this shift in technology, con- based denoising algorithm so that the resulting residue con-
ventional film photography is disappearing. When combined tains the needed noise components. However, since the un-
with the availability of extremely powerful image process- derlying image model used in denoising is an idealistic one
ing techniques and computer graphics technologies, this trend the residue signal also contains contributions from the image
poses new issues and challenges concerning the authenticity signal. Hence, to eliminate random component of the noise
and integrity of digital images. This problem is further ex- denoising is applied to a set of images (captured by the same
acerbated when photographic evidence is considered. Digital camera) and the corresponding noise residues are averaged to
image forensics techniques aim at closing this gap by uncov- obtain the reference pattern of a given digital camera. Later,
ering facts about a digital image. Due to wide popularity of to determine whether a given image is captured by a digital
digital cameras, design of many digital image forensics tech- camera, the noise pattern extracted from the individual image
niques requires an understanding of the fundamental opera- is correlated with the reference pattern of the digital camera.
tion of the digital camera. A decision is made based by comparing the measured correla-

In this regard, the core element of a digital camera is a tion statistic to a pre-determined decision threshold. Figure 1
charged coupled device (CCD) which measures the intensity illustrates the steps involved in matching an image to a digital
of light incident on it. A CCD sensor is essentially a two- camera.
dimensional array of light sensitive elements called pixels. Since each CCD element (pixel) is essentially monochro-
Similar to other electronic devices, a CCD sensor is also sub- matic, capturing color images requires separate CCD arrays
ject to measurement noise [1]. More specifically, the noise in for each color component. However, due to cost considera-
a digital image can be assumed to have two main components: tions most digital cameras use only a single CCD sensor along



test data is constructed by pooling all images taken by other
digital cameras together the distribution no longer follows the
model. However, this approach is not preferable when real-

Morn noise life forensics analysis is considered as it does not yield to
co.mall 0 Decision? true false-positive (false-acceptance) rates, which is one of

1I the most important parameters of a forensics method. There-
fore, in our setup, we rather compared the correlation valuesMm obtained from images taken by a given camera with the corre-

noise lation values calculated from a mixed set of images. (It should
also be noted that in our experimental setup there is no overlap

Fig. 1. Illustration of the Sensor Pattern Noise Based Source between the training and test image sets.) The performance
Identification Method Proposed in [1] results obtained under this setting are given in Figure 2. It

can be observed that the overall performance of the method
is found to be worse than the reported results in [1] due to

with an array of spectral filters in front of the sensor, namely, differences in the experiments. However, in the next section,
color filter array (CFA). The CFA essentially arranges pix- we describe a mechanism to improve the false-positive versus
els in a pattern so that each pixel captures one of the red, true-positive detection performance of the sensor noise based
green or blue colors, and the missing color values for each source camera identification technique.
pixel is later computed through a process called demosaie- In our experiments, we considered three different digital
ing, a form of interpolation that uses color information from cameras. These cameras include a Sony DSC 90, a Sony DSC
neighboring pixels to obtain the color value of a pixel. At 72p and a Canon Powershot S1 IS. Number of images taken
the same time, however, demosaicing operation (interpola- by these three cameras are 1214, 894 and 944, respectively.
tion) introduces pixel-wise correlations whose specific form The images in all sets are in JPEG format and are of sizes
depends on the specifics of the interpolation. In [2, 3], we 1728 x 2304, 960 x 1280, and 1536 x 2048, respectively. In
utilize such artifacts to identify the source camera-model of a each set, 300 images are selected randomly (as the training
digital image. Since, extraction of a reference pattern noise set) and used in extraction of the reference pattern of each
of a digital camera requires the availability of a number of camera. The rest of the images are used for testing and verifi-
images (taken by the same camera), this approach can be in- cation purposes.
corporated to sensor noise based source camera identification In order to extract the noise patterns, we implemented the
by also characterizing the underlying demosaicing operation very same denoising filter employed in [1]. The performance
and verifying that the test image also exhibits similar charac- results for the three cameras are obtained in the following
teristics. Such a combined test will improve the accuracy in manner:
the matching process since in addition to individual camera
properties camera's class properties are also involved in the 9 The reference patterns are obtained by averaging the
decision. 300 noise residual signals from the training sets of each

The rest of the paper is organized as follows. In Section camera.
2, we discuss the limitations of the methodology described in
[1] to be applied in a forensic investigation and present per- * Denoising algorithm is applied to each of the test im-
formance results obtained under a more realistic scenario. In ages and the extracted noise is correlated with the ref-
Section 3, the potential of demosaicing artifacts [2, 3] in iden- erence pattern. (It should be noted that 300 training
tifying the class properties of camera (e.g., camera-model) images are not used in this step.)
from a given set of images is discussed and experimental re-
sults are presented. Incorporation of the demosaicing artifacts * Denoising algorithm is applied to a set of approximately

to sensor noise based source camera identification method and 50K images. Noise residuals extracted from these im-
the corresponding performance results are given in Section 4. ages are also correlated with the sensor pattern noise of
Our conclusions and future efforts are given in Section 5. each camera. (In cases when the size of the noise image

is different from the size of the sensor noise pattern, the
larger one is cropped appropriately to match the smaller

2. PATTERN NOISE AND SOURCE CAMERA one.)
IDENTIFICATION

As a result of the last two steps, we obtain two set of correla-
In [1], the authors carry out the performance analysis (e.g., tion values for each camera. The distribution of two detection
detection and false-positive rates) by considering pairwise com- statistics are then used to obtain the receiver operating char-
parisons since the corresponding (pairwise) distributions can acteristic (ROC) curves in terms of false rejection rate (FRR)
be well modeled by the generalized Gaussian. I.e., when the and false acceptance rate (FRR) values, as given in Figure 2.
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Fig. 2. ROC curves for three different cameras Fig. 4. Performance of the proposed method for Sony DSC
590

It can be observed from these performance results that, al-
though one of the three digital cameras can be identified more depend on the specifics of the demosaicing algorithm and they
successfully than the others, the measured FAR and FRR val- can be used to classify the images as originating from a cer-
ues are not satisfactory enough for the method to be regarded tain class of digital cameras We have reported the results of
as as a reliable forensic tool. this multi-class decision process in [2, 3]. In this paper, we

It should be emphasized that if the test images also include reduce the problem to a single-class classification problem to
the training set (i.e., the 300 images), the correlation values decide whether an image is taken b a articular digital cam-
would yield a better differentiation between the test images era model or not. In other words, rather than trying to cate-
and the randomly generated set (i.e., 50K images). Figure gorize the structure of artifacts, we determine if the artifacts
3 shows the improvement in the correlation values when the exhibit a specific structure. Since in the feature space, features
reference pattern noise extracted from a camera is correlated associated with all digital cameras will be more dispersed as
with the noise extracted from images in training set as com- compared to those of a single camera, the difficulty of classi-
pared to images in the test set. While the mean value of the fication will be lower thereby yielding an improvement in the
correlations obtained from the set of test images is 0.08, the performance.
mean calculated over the set of training images is 0.12. In our initial experiments we deployed the images taken

by the Sony DSC S90 camera and extracted the features from
0.3 the training set (e.g., 300 images). In a similar manner, we

0.5 extracted features from a mixed set of 2K images captured
0.2 T by various models of digital cameras. In the first step of our

experiments, we used a one-class SVM classifier to decide
'4 Zi!••••+,:.:,• whether or not an image is taken by a Sony DSC S90 cam-, 01• era. For this, we used 100 images, out of 300 images, to train

0 4 4. _1 the classifier. Then, we tested the constructed classifier on
AS remaining 200 images and the images from the mixed set.
+ The resulting accuracy is computed as 87.8%. To overcome

o0 20 0the limitations of one-class classifier design (in obtaining the
decision hyper-plane), in the second set of our experiments,
we considered two-class classification. Hence, in addition to

Fig. 3. Comparison of the correlation values obtained from 100 images from the camera training set we included 100 im-
test and training datasets for Sony DCS90 ages from the mixed set in designing the classifier, where the

remaining 200 + 1900 images are used for the testing the re-
sulting classifier. In this case, the performance increased to

3. DETECTING INTERPOLATION ARTIFACTS 96.6% and the corresponding ROC is shown in Figure 4.
These results show that demosaicing artifacts give better

In [2, 3], we proposed a source camera-model identification results when used with single-class approach. Furthermore,
method based on the observation that interpolation operation in the next section we show how to use the same approach to
will introduce artifacts in the form of periodic correlations reduce false-acceptance rate of the sensor noise based source
among image pixels [4]. The specific form of the the artifacts camera identification method.
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i...... in Figure 6. This shows that cascaded decision process offers

viable alternative as the false-positive rate decreases consider-
Fig. 5. Performance of the combined decision process for ably whereas the true detection rate remains almost the same.
Sony DSC s90

5. ONGOING WORK

4. COMBINING PATTERN NOISE PROPERTIES In this paper, we propose an improvement over source camera
WITH DEMOSAICING CHARACTERISTICS identification based on sensor's pattern noise. Our method is

To improve the accuracy of sensor noise based source camera motivated by the observation that when the reference pattern

identification technique described in Section 2 we enhance it of a digital camera is correlated by the noise extracted from

by also verifying the consistency of demosaicing artifacts, as many images, as initially proposed in [1], the resulting false
described in Section 3. This can be realized by one of the positives are more than estimated by the numerical compu-
following two methods tations. To address this problem, we propose a scheme that

enables application of this method in a more realistic foren-
sics scenario. This is realized by incorporating the digital

4.1. Combined Decision Process camera's demosaicing characteristics into the decision pro-

cess thereby increasing the reliability of the decision. Prelim-
In this case,the decision is the result of a combined decisi- inary results show that we are able to reduce false-acceptancemcaimweentefauecocrigdmsiigarti- mayrslssothtwarabetreuefleacpne

mechnis whrei th feture coceringdemsaiing rate of the sensor pattern noise method. In the final version
facts are combined with the measured correlation value into a of the paper, further results obtained on other digital cameras

single feature vector and a classifier is designed accordingly. and on a larger mixed dataset will be provided.

In the experiments, we used the same image set as in Sec-

tion 3. The accuracy obtained for Sony DSC S90 camera was
98.21%. The corresponding ROC curve is given in Figure 6. REFERENCES
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